
1 | P a g e

Course Objectives:

 To understand the structure and environment of Java.

 To implement the relationship between objects.

 To apply data hiding strategy in objects.

 To implement text processing and error handling.

 To organize data using different data structures.

 To create multi threaded graphical user interface applications.

Course Outcomes:

1. Understand the environment of JRE and Control Statements.

2. Implement real world objects using class Hierarchy.

3. Implement generic data structures for iterating distinct objects.

4. Implement error handling through exceptions and file handling through streams.

5. Design thread-safe GUI applications for data communication between objects.

Unit I: Java Environment and Program Structure

History of Java, Features, Applications, Java Installation - JDK and JRE, JVM

Architecture, OOPS Principles, Class and Object, Naming Convention, Data Types,

Type Casting, Type Conversion, Wrapper classes, Operators, instance of operator,

Command Line Arguments, Decision making, Arrays, and Looping statements.

Course Outcomes: Student will be able to

1. Understand architecture of Java Virtual Machine.(L2)

2. Understand the structure of java program and its environment. (L2)

2 | P a g e

Unit II: Class Hierarchy & Data Hiding

Property, Method, Constructor, Inheritance (IS-A) , Aggregation and Composition (HAS-A), this

and super, static and initialize blocks, Method overloading and overriding, static and final

keywords, Types of Inheritance, Compile time and Runtime Polymorphism, Access Specifiers

and scope, packages and access modifiers, Abstract class, Interface, Interface Inheritance,

Achieving Multiple Inheritance, Class casting, Object Cloning, Inner Classes.

Course Outcomes: Student will be able to

1. Understand the class hierarchy and their scope. (L2)

2. Implement relationship between objects. (L3)

3. Understand data hiding and nested classes. (L2)

4. Implement data type casting and cloning of objects. (L3)

Unit III: Strings and Collections

String: Methods, StringBuffer and StringBuilder, StringTokenizer, Collections: Exploring

java.util.*, Scanner, Iterable, Collection Hierarchy, Set, List, Queue and Map, Comparable and

Comparator, Iterators: foreach, Enumeration, Iterator and ListIterator.

Course Outcomes: Student will be able to

1. Understand the usage of String and its properties and methods.(L2)

2. Understand data structures and Iterators. (L2)

3. Create the data structures and implement different utility classes. (L3)

Unit IV: IO and Error Handling

IO Streams: Exploring java.io.*, Character and Byte Streams, Reading and Writing,

Serialization and De-serialization, Error Handling: Error vs Exception, Exception hierarchy,

Types of Exception, Exception handlers, User defined exception, Exception propagation.

Course Outcomes: Student will be able to

1. Understand character and byte streams. (L2)

2. Understand the hierarchy of errors and exceptions. (L2)

3 | P a g e

3. Implement data streams and exception handlers. (L3)

Unit V: Threads and GUI

Multi-Threading: Process vs Thread, Thread Life Cycle, Thread class and Runnable

Interface, Thread synchronization and communication. GUI: Component, Container, Applet,

Applet Life Cycle, Event delegation model, Layouts, Menu, MenuBar, MenuItem.

Course Outcomes: Student will be able to

1. Understand the Thread Life Cycle and its scheduling.(L2)

2. Implement the synchronization of threads. (L2)

3. Create graphical components using Abstract window toolkit. (L3)

TEXT BOOKS:

1. The complete Reference Java, 8th edition, Herbert Schildt, TMH.

2. Programming in JAVA, Sachin Malhotra, SaurabhChoudary, Oxford.

3. Introduction to java programming, 7th edition by Y Daniel Liang, Pearson.

4. Java: How to Program, 9th Edition (Deitel) 9th Edition.

5. Core Java: An Integrated Approach, Java 8 by R. Nageswara Rao.

REFERENCE BOOKS:

1. Swing: Introduction, JFrame, JApplet, JPanel, Componets in Swings, Layout

Managers

2. Swings, JList and JScrollPane, Split Pane, JTabbedPane, JTree, JTable, Dialog

Box.

4 | P a g e

UNIT-1

FEATURES of java:

1. Simple

2. Platform independent

3. Architectural neutral

4. Portable

5. Multi threading

6. Distributed

7. Networked

8. Robust

9. Dynamic

10. Secured

11. High performance

12. Interpreted

13. Object Oriented Programming Language

1. Simple:

JAVA is free from pointers hence we can achieve less development time and lessexecution time

JAVA contains user friendly syntax’s for developing JAVA applications.

2.Platform Independent:

A program or technology is said to be platform independent if and only if which can run on all

available operating systems with respect to its development and compilation. (Platform

represents O.S).

3Architectural Neutral:A language or technology is said to be architectural neutral which can

run on any available processors in the real world. The languages like C,Cpp are treated as

architectural dependent. The language like JAVA can run on any of the processor irrespective

of their architecture and vendor.

4.Portable: A portable language is one which can run on all operating systems and on all

processors irrespective their architectures

i.e Portable=Architectural neutral + Platform Independent

5. Multithreaded: A flow of control is known as a thread. When any Language executes multiple

threads at a time that language is known as multithreaded e. It is multithreaded.

6. Distributed: Using this language we can create distributed applications.

7. Robust: Java has the strong memory allocation and automatic garbage collection mechanism.

It provides the powerful exception handling and type checking mechanism as compare to other

programming languages.

5 | P a g e

8. Dynamic: It supports Dynamic memory allocation due to this memory wastage is reduce and

improve performance of the application. The process of allocating the memory space to the

input of the program at a run-time is known as dynamic memory allocation,

9. Secure: java API contains security related concepts due to these security related concepts

java is one of the secure language.

10. High performance: It have high performance because of following reasons;

✓ Garbage collector, collect the unused memory space and improve the performance of

the application.

✓ It has no pointers so that using this language we can develop an application very

easily.

✓ It support multithreading, because of this time consuming process can be reduced to

executing the program.

11. Object Oriented: It supports OOP's concepts because of this it is most secure language

12. Networked: The basic aim of networking is to share the data on multiple machine either on

same network or different network

13. Interpreted: Java is one of the interpreted programming language.

Applications of java

• Desktop Applications such as acrobat reader, media player etc.

• Web Applications such as online library management, www.amazon.com, etc.

• Enterprise Applications such as banking applications.

• Mobile

• Embedded System

• Smart Card

• Robotics

• Games, etc.

Two types of java softwares

6 | P a g e

i. Java Development Kit(JDK)

ii. Java Runtime Environment(JRE)

✓ On the developer machine JDK must install

✓ On client machine JRE must install

JDK used for developing, compiling, executing and modify existing java Applications. JDK

contains development tools like compiler and java run time environment (JRE).

Java runtime environment (JRE) stands for java run time environment. Using JRE we only run

java applications. JRE contains JVM and API(set of library files)

JVM stands for Java Virtual machine JVM is responsible for executing java byte code. JVM

contains interpreter and JIT. Interpreter is used for running java byte code. JIT helps the

interpreter to run java program fast.

 JIT is Just in time compiler increases the performance of the java program by executing fast.

JAVA VIRTUAL MACHINE(JVM)

Java virtual machine (JVM) is the heart of the entire java program execution process.

We compile the program by using java compiler and we run the program using JVM. JVM is the

software program written in c++ used to provide runtime environment of java program.

It is responsible for taking .class file and converting each byte code instruction into machine

language instruction that can be executed by micro processor.

7 | P a g e

1) ClassLoader :

✓ The class loader is a subsystem used for loading class files.

✓ It is responsible for three activities

✓ Loading: The Class loader loads the “.class” file

✓ Linking: it verifies the .class file and allocates memory for class variables

✓ initialization : in this phase all the static variables are assigned their values.

2) Method Area :

Method area is the memory block which stores class name, methods and variables information in

the java program

3) Heap :

In this memory area objects are created.

4) JVM language Stacks or java stacks :

Method code is stored on method area but while running a method, it needs some more memory

to store data and results. This memory is allotted on java stacks. Java stacks is the memory area

where java methods are executed

5) PC Registers :

PC register store the address of the instruction which is currently being executed

6) Native Method Stacks :

8 | P a g e

Java methods are executed in java stacks whereas native methods (such as C/C++ functions) are

executed native method stacks.

7) Execution Engine :

Execution engine convert the byte code into machine understandable language

It is a type of software consists of interpreter, jit compiler and garbage collector

Interpreter executes the byte code line by line.

Just in time (JIT) compiler increases the speed of execution of interpreter

Garbage collector is software used to remove unused objects

8) Native Method interface :

Native Method Interface allows Java code which is running in a JVM by call by native libraries

(C/C++ libraries)

9) Native Method Libraries

Native Libraries is a collection of the Libraries(C/C++) which are needed by the Execution

Engine to run java program.

What is JRE. What happen when JRE is not available? Write about the relation in

between JRE and JVM.

Java runtime environment (JRE) stands for java run time environment. Using JRE we only run

java applications. JRE contains JVM and API(set of library files)

9 | P a g e

JDK=JRE +Compiler Tools

JRE=JVM+API

If JRE is not available then we cannot run the program

✓ On the developer machine JDK must install

✓ On client machine JRE must install

JDK used for developing, compiling, executing and modify existing java Applications. JDK

contains development tools like compiler and java run time environment (JRE).

JVM stands for Java Virtual machine JVM is responsible for executing java byte code. JVM

contains interpreter and JIT. Interpreter is used for running java byte code. JIT helps the

interpreter to run java program fast.

 JIT is Just in time compiler increases the performance of the java program by executing fast.

OOPS(Object Oriented Programming System) Principles

Object-Oriented Programming is a methodology to design a program using classes and

objects. It simplifies software development and maintenance by providing some concepts:

1. Object

2. Class

3. Abstraction

4. Encapsulation

5. Inheritance

6. Polymorphism

1.Object

Object is an physical entity which contains properties and behavior. For example, a chair, pen,

table, keyboard, bike, etc. Object is a physical entity. An object contains an address and takes up

some space in memory.

We can create object by new operator

Classname objname=new Classname();

Example Car benz=new Car()

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/encapsulation
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java

10 | P a g e

benjz is a object and Car is class

Example: A dog is an object because it has states like color, name, breed, etc. as well as

behaviors like wagging the tail, barking, eating, etc.

2.Class

A class can also be defined as a blueprint from which you can create an individual object. Class

doesn't consume any space.

Using Class a model or blue print we can create ‘n’ number of objects

Class contains two parts namely properties and behaviour.

Syntax for defining a CLASS:

Class <clsname>

{

Variable declaration;//properties

 Methods definition;//behaviour
};

3.Data Abstraction:

“Data abstraction is a mechanism of retrieving the essential details without dealing with

background details”.

Advantages of Abstraction :

✓ It reduces the complexity of viewing the things.

✓ only important details are provided to the user.

4.Encapsulation :

The process of binding data members and methods into a single unit are known as
encapsulation.

• Data encapsulation is basically used for achieving data/information hiding i.e.,

security.

5.Inheritance:

• Inheritance is the process of taking the features (data members + methods) from one

class to another class.

• The class which is giving the features is known as base/parent class.

• The class which is taking the features is known as derived/child/sub class.

11 | P a g e

6.Polymorphism:

Polymorphism is a process of representing “one form in many forms”.

Poly means many.

 morphism means forms

Polymorphism uses those methods to perform different tasks. This allows us to perform a single

action in different ways.

Class and object

Class object

Class is a group of elements having

common properties and behavior

Among the group of elements if any individual element

having physical properties and physical behavior then

that individual element is called is an object.

Class is virtual

Object is real

Class is virtual encapsulation of

properties and behavior.

Object is physical encapsulation of properties and

behavior.

Class is a blueprint or model for

creating objects

Object is an instance of the class

Syntax:

class <classname>

{

}

Syntax:

Classname objname=new Classname()

12 | P a g e

Naming Conventions

Naming conventions are Rules to be followed when giving names to the identifier

Class Level Naming Conventions

1.Class name must not be a keyword

2.Class name should begin with capital letter (Single word)

First letter of every word of class name should begin with capital letter(Multiple word)

Ex

Student----(Single word)

BranchName----(multiple word)

Method Level Naming Conventions

1.Method name must not be a keyword

2.First letter of method name should begin with lowercase letter(Single word)

3.First letter & first word should be lowercase and First letter of every other word must be

capital(multiple word)

Example

read() (Single word)

readName(Multiple word)

nextLine(Multiple word)

Variable level Naming Conventions

1.Variable name must not be a keyword

2.Allowed variables in java

1. a to z

2. A to Z

3. 0 to 9

4. _ (underscore)

5. $ (dollar)

3.variables can’t start with digit

4.variables are case sensitive

13 | P a g e

Java Data Types

1.Primitive/Fundamental Data Type:Primary Data Type stores single value.

Java supports eight primitive data types: byte, short, int, long, float, double, char and

boolean.

These eight data types are further classified into four groups:

1. Integer data type:These data types stores integer value

Ex: byte,short,int,long

Floating data type:These data types stores decimal values

2. Ex :float,double

3. Character data type:this data type stores single character value

4. Boolean data type:It stores Boolean values like true or false

Primitive data types

Data Type Size Description

Byte 1 byte Stores whole numbers from -128 to 127

Short 2 bytes Stores whole numbers from -32,768 to 32,767

Int 4 bytes
Stores whole numbers from -2,147,483,648 to

2,147,483,647

Long 8 bytes
Stores whole numbers from -9,223,372,036,854,775,808

to 9,223,372,036,854,775,807

Float 4 bytes
Stores fractional numbers. Sufficient for storing 6 to 7

decimal digits

Double 8 bytes Stores fractional numbers. Sufficient for storing 15

14 | P a g e

decimal digits

Boolean 1 bit Stores true or false values

Char 2 bytes Stores a single character/letter or ASCII values

2.Non-Primitive/Derived Data Types: It stores multiple value of same type

Example :Arrays,String

3.User friendly data types:It stores multiple values of different types Example: classes, interfaces

Why character datatype in java takes two bytes of information

Character data type of java takes 2 bytes of storing single character because java is based on

Unicode system it supports 18 international language to support all characters in 18international

languages it takes two bytes of information

Type Conversion and Type Casting:

Type conversion: Conversion of lower data type to higher data type is known as

TypeConversion or automatic conversion or implicit type casting or Widening. Internallly

Compiler is responsible to converting one data type to another data type automatically.

Type casting: Conversion of higher data type to lower data type is known as TypeCasting or

Explicit type casting or Narrowing .Type casting is done by the programmer by using cast

operator. Here programmer is responsible for converting one data type to another data type by

using cast operator

TypeConversionAndCasting.java

class TypeConversionAndCasting

{

public static void main(String args[])

{

char x='A';

int y=x;// converting lower data type to higher data type

//type conversion or widening or implicit casting or automaticconversion

//here compiler is responsible for converting one data type to another data type

System.out.print(y);

15 | P a g e

double a=1.23345555566677;

float b=(float)a;// narrowing // programmer manual conversion or

//explicit type casting

System.out.println(b);

}

}

Output:

javac TypeConversionAndCasting.java

java TypeConversionAndCasting

converting char 'A' to int=65

converting double to float=1.2334555

Wrapper Classes

The wrapper class in Java provides the mechanism to convert primitive into object and

object into primitive.

Since J2SE 5.0, auto boxing and unboxing feature convert primitives into objects and objects

into primitives automatically. The automatic conversion of primitive into an object is known as

auto boxing and the automatic conversion of object into primitive is known as unboxing.

Java is an object-oriented programming language, so we need to deal with objects many times so

we need to use wrapper classes for converting primitives into objects and objects into primitive.

The eight classes of the java.lang package are known as wrapper classes in Java. The list of

eight wrapper classes are given below:

Primitive Type Wrapper class

boolean Boolean

char Character

byte Byte

short Short

https://www.javatpoint.com/java-boolean
https://www.javatpoint.com/post/java-character
https://www.javatpoint.com/java-byte
https://www.javatpoint.com/java-short

16 | P a g e

Int Integer

long Long

float Float

double Double

WrapperExample.java

//Wrapper classes example autoboxing and unboxing

class WrapperExample

{

public static void main(String args[])

{

Char ch=’A’;

Character j=ch;//auto boxing from 1.5 onwards converting primitive into object

System.out.println(j);//auto boxing from 1.5 onwards converting primitive into object

Character c1=new Character(’A’);

char c2=c1;////un boxing from 1.5 onwards converting object into premitive

System.out.println(l);//auto boxing from 1.5 onwards converting object into premitive

}

}

javac WrapperExample.java

java WrapperExample

20

20

30

30

Operators

https://www.javatpoint.com/java-integer
https://www.javatpoint.com/java-long
https://www.javatpoint.com/java-float
https://www.javatpoint.com/java-double

17 | P a g e

Operator in java is a symbol that is used to perform operations. For example: +, -, *, / etc.

There are many types of operators in java which are given below:

✓ Unary Operator

✓ Arithmetic Operator

✓ Shift Operator

✓ Relational Operator

✓ Bitwise Operator

✓ Logical Operator

✓ Ternary Operator

✓ Assignment Operator.

Operator Type Category Precedence

Unary Postfix X++(post increment)

x—(post decrement)

if x=5 and a=x++;

then x=6; and a=5;

Prefix ++x(pre increment)

--x(pre decrement)

 If x=5; and a=++x;

then a=6; and x=6;

Arithmetic Multiplicative *

Additive +

 Substraction -

 Division /

 Modulus %

18 | P a g e

Shift Shift <<>>

Relational Comparison <><= >=

Equality == !=

Bitwise bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

Logical logical AND &&

logical OR ||

Ternary Ternary ? :

Assignment Assignment = += -= *= /= %=

instanceof operator

The java instanceof operator is used to test whether the object is an instance of the specified

type (class or subclass or interface).

The instanceof in java is also known as type comparison operator because it compares the

instance with type. It returns either true or false. If we apply the instanceof operator with any

variable that has null value, it returns false.

Simple.java

class Simple{

 public static void main(String args[]){

 Simple s=new Simple();

 System.out.println(s instanceof Simple);//true

19 | P a g e

 }

}

javac Simple.java

java Simple

true

Command Line Arguments in Java:

If any input value is passed through the command prompt at the time of running of the program

is known as command line argument by default every command line argument will be treated

as string value and those are stored in a string array of main() method

Syntax for Compile and Run CMD programs

Compile By -> Javac Mainclass.java

Run By -> Java Mainclass value1 value2 value3

Example for Command line Arguments

DecimaltoBinary.java

class DecimaltoBinary

{

public static void main(String args[])

{

int num=Integer.parseInt(args[0]);

String str=Integer.toBinaryString(num);

System.out.println(str);

}

}

Output

javac DecimaltoBinary.java

java DecimaltoBinary 10

1010

20 | P a g e

Control Flow

Control Statements are the statements which alter the flow of execution of the program.

Control Statements can be divided into three categories, namely

• Selection statements or decision making statements

• Iteration statements or looping statements

• Jump statements

Selection statement are if,if/else and Switch statements

Iteration Statements are for loop,while,do-while statements

Jump statement are continue,break statements

i)Selection statements

If/else statement syntax

 if (condition)

 {

 first statement;

 }

 else

 {

 second statement;

 }

Example

class Ifstatement

{

public static void main(String args[])

{

int i=-5;

if(i>0)

{

21 | P a g e

System.out.println("positive number");

}

else if(i<0)

System.out.println("Negative number");

else

System.out.println("number is zero");

}

}

Output:

Javac Ifstatement.java

Java Ifstatement

Negative number

Switch statement syntax

Switch(choice)

{

Case 1:

 Statements;

 break;

Case 2:

 Statements;

 break;

Case 3:

 Statements;

 break;

.....

.....

Case n:

 Statements;

 break;

Default:

break;

}

Example

class Switch_Statement

{// class begin

public static void main(String args[])

{// main method

int choice=4;

String day;

22 | P a g e

switch(choice)

{

case 1:

 day="Monday";

 break;

case 2:

 day="Tuesday";

 break;

case 3:

 day="Wednesday";

 break;

case 4:

 day="Thursday";

 break;

case 5:

 day="Friday";

 break;

case 6:

 day="Saturday";

 break;

case 7:

 day="Sunday";

 break;

default:

 day="Invalid day";

}

System.out.println("Selected choice is "+day);

}

}

Output:

Javac Switch_statement.java

Java Switch_statement

Selected choice is Thursday

ii)Iteration Statements: are for loop,while,do-while statements

For:

The for loop in java is used to iterate and evaluate a code multiple times.

Syntax:

 for(initialization;condition;increment/decrement)

example

class Forloop_Demo

{ // class begin

public static void main(String args[])

{//main method

for(int i=1;i<=10;i++)

23 | P a g e

{//for loop

System.out.println(i)

}

}// end of main method

}// end of class

Output :

javac Forloop_Demo.java:

java Forloop_Demo:

1 2 3 4 5 6 7 8 9 10

While loop :

Syntax:

while(condition)

{

Statements;

}

Example:

class While_Statement

{// class begin

public static void main(String args[])

{// main method

int i=0;

while(i<=10)

{//while loop starts

System.out.println(i);

i++;

}

}// end of main method

}// end of class

Output :

javac While_Statement.java :

java While_Statement :

1 2 3 4 5 6 7 8 9 10

Foreach:

The traversal of elements in an array can be done by the for-each loop

Syntax:

Foreach(initialization:array)

{

Statements;

}

Example:

Class Foreach

24 | P a g e

{

public static void main(String args[])

{

Int arr[]={10,20,30,40,50}’;

for(int i : arr)

{

System.out.println(i);

}

}// end of main method

}// end of class forEach

 Output :

javac Foreach.java :

java Foreach :

1 2 3 4 5 6 7 8 9 10

iii.Jump statement are continue,break statements :

Break :

The break statement in java is used to terminate a loop and break the current flow of the

program.

Syntax:

 break;

Example:

class Break_Example

{// class Break_Example begin

public static void main(String args[])

{// main method

for(int i=1;i<=10;i++)

{

if(i==5)

{

break;

}

System.out.println(i);

}

}// end of main method

}// end of class

Output :

javac Break_Example.java

java Break_Example

1 2 3 4

25 | P a g e

Continue :

To jump to the next iteration of the loop, we make use of the continue statement. This statement

continues the current flow of the program and skips a part of the code at the specified condition.

Syntax:

Continue;

Example

class Continue_Example

{

public static void main(String args[])

{

 for(int i=1;i<=10;i++) {

if(i==5)

 {

 continue;

 }

 System.out.println(i);

 }

}

}

Output

javac Continue_Example.java

java Continue_Example

1 2 3 4 6 7 8 9 10

return

return keyword used to exit from a method, with or without a value.

Syntax: return

26 | P a g e

Example

class Return

{

int display(int n)

{

return n*n;

}

}

class Return_demo

{

public static void main(String args[])

{

Return obj=new Return();

int x=obj.display(10);// method callinf

System.out.println(x);

}

}

Output

javac Return_demo.java

java Return_demo

100

Array in java:

Array is a collection of similar type of data. It is fixed in size means that you can't increase the

size of array at run time. It is a collection of homogeneous data elements. It stores the value on

the basis of the index value.

Advantage of Array:

One variable can store multiple value:

The main advantage of the array is we can represent multiple value under the same name.

27 | P a g e

Random access:

We can retrieve any data from array with the help of the index value.

Disadvantage of Array:

The main limitation of the array is Size Limit when once we declare array there is no chance to

increase and decrease the size of an array according to our requirement, Hence memory point of

view array concept is not recommended to use. To overcome this limitation in Java introduce the

collection concept.

Note: At the time of array declaration we cannot specify the size of the array. For Example int[5]

a; this is wrong.

Syntax Array in Java:

1. int[][] a;

2. int a[][];

3. int [][]a;

4. int[] a[];

5. int[] []a;

6. int []a[];

Array creation:

Every array in a Java is an object, Hence we can create array by using new keyword.

Single dimensional Arrays:

Syntax :

int[] arr = new int[10]; // declare, instantiate

or

int[] arr = {10,20,30,40,50};//declare instantiate, initialize

Multi dimensional arrays

int[][] arr=new int[2][3];// declare instantiate

or

int [][] arr={{1,2},{2,3,4,},{4,5,6}};// declare instantiate ,initialize

How the memory allocation of arrays in java. Is array object? If yes explain.

Yes Array is an object in java

Memory is stored as contagious memory locations in heap .

ArrayExample.java

class ArrayExample

{

public static void main(String args[])

{

int b[]=new int[10];//single dimensional arrays

28 | P a g e

b[0]=1;

b[1]=2;

b[2]=3;

b[3]=4;

System.out.println("array b values");

for(int i=0;i<b.length;i++)

{

System.out.println(b[i]);

}

int d[][]=new int[2][3];//multi dimensional arrays

d[0][0]=23;

d[0][1]=34;

d[0][2]=56;

d[1][0]=3;

d[1][1]=4;

d[1][2]=6;

System.out.println("array d values");

for(int i=0;i<d.length;i++)

{

 for(int j=0;j<d[i].length;j++)

 {

 System.out.println(d[i][j]);

 }

}

}

}

javac ArrayExample.java

java ArrayExample

array b values

1

2

3

4

0

0

0

0

0

0

array d values

23

34

29 | P a g e

56

3

4

6

Contrast ternary operator and if condition ?. Explain with example.

ternary operator if condition

Java ternary operator is the only conditional

operator that takes three operands. It’s a one-

liner replacement for if-then-else statement and

used a lot in Java programming.

 If Condition to specify a block of code to be

executed, if a specified condition is true

 Use else to specify a block of code to be

executed, if the same condition is false

Syntax:

var=(condition)?exp-True :exp-False;

Syntax:

1. if (condition)

2. {

3. first statement;

4. }

5. else

6. {

7. second statement;

8. }

Example:

int time = 20;

String result = (time < 18) ? "Good day." :

"Good evening.";

System.out.println(result);

Example:

int time = 20;

if (time < 18) {

 System.out.println("Good day.");

} else {

 System.out.println("Good evening.");

}

Illustrate arrays to display a matrix 2X2. Input 5, 6, 7, 8.

Matrix.java(2X2)

import java.util.Scanner;

class Matrix

{

public static void main(String args[])

{

Scanner sc=new Scanner(System.in);

int a[][]=new int[2][2];

System.out.println("enter the matrix input values");

for(int i=0;i<a.length;i++)

{

 for(int j=0;j<a[i].length;j++)

 {

30 | P a g e

 a[i][j]=sc.nextInt();

 }

}

for(int i=0;i<a.length;i++)

{

 for(int j=0;j<a[i].length;j++)

 {

 System.out.println(a[i][j]);

 }

}

}

}

javac Matrix.java

java Matrix

5 6 7 8

5

6

7

8

31 | P a g e

UNIT-2

Property or Variable or Attribute or Class member :

Variables are used for storing values.

There are different types of variables, for example:

• String - stores text, such as "Hello". String values are surrounded by double quotes

• int - stores integers without decimals, such as 123 or -123

• float - stores floating point numbers, with decimals, such as 19.99 or -19.99

• char - stores single characters, such as 'a' or 'B'. Char values are surrounded by single quotes

• boolean - stores values with two states: true or false.

Syntax:

< data Type><variable name> = <value>

Rules of declaring variable :

• A variable name can consist of Capital letters A-Z, lowercase letters a-z, digits 0-9, and two

special characters such as underscore and dollar Sign.

• The first character must be a letter.

• Blank spaces cannot be used in variable names.

• Java keywords cannot be used as variable names.

• Variable names are case-sensitive.

Method :

A method is a collection of statements that perform some specific task

Methods allow us to reuse the code without retyping the code.

Syntax of method :

The return type : The data type of the value returned by the method or void if does not return a

value.

Method Name : Name of the method

Parameter list : parameters are separated by comas

Method body :

 it is enclosed between braces

MethodOverloading.java:

class MethodOverloading

{

void add(int a,int b)

{

int c=a+b;

System.out.println(c);

}

32 | P a g e

void add(float a,float b)

{

float c=a+b;

System.out.println(c);

}

void add(double a,double b)

{

double c=a+b;

System.out.println(c);

}

public static void main(String args[])

{

MethodOverloading m=new MethodOverloading();

m.add(10,20);

m.add(10.5,34.6);

m.add(1.3f,3.4f);

}

}

Output :

javac MethodOverLoading.java

java MethodOverloading

30

45.1

4.7

Constructor:

Constructors are meant for initializing the object. Constructor is a special type of method that is

used to initialize object values.

Constructor is invoked at the time of object creation. It constructs the values i.e. data for the

object that is why it is known as constructor.

Constructor is just like the instance method but it does not have any explicit return type.

Constructor name must be same as its class name.

 Constructor should not return any value even void also.

Constructors are called automatically whenever an object is creating.

Types of Constructors:

There are two types of constructors:-

1. Default constructor (no-argument constructor)

2. Parameterized constructor

1. Default constructor (no-argument constructor):-

 A constructor is one which will not take any parameter.

A constructor that have no parameter is known as default constructor.

Syntax:-

class < class name >

{

33 | P a g e

 classname() //default constructor

 {

 Block of statements;

 ;

 ;

 }

;

;

};

2. Parameterized Constructor:- A constructor is one which takes some parameters.

Syntax:-

class < class name >

{

 classname(list of parameters) //paramiterized constructor

 {

 Block of statements;

 ;

 ;

 }

;

;

};

Constructor overloading:

 is a technique in Java in which a class can have any number of constructors such that each

constructor differ with their parameters

Constructors with diff arguments is known as Constructor Overloading

Constructor over loading example

Student.java :

class Student

{

int rollNumber;

String branchName;

 Student()

 {

 rollNumber=100;

 branchName="CSE";

 System.out.println(rollNumber);

 System.out.println(branchName);

 }

 Student(int rollNumber)

 {

 this.rollNumber=rollNumber;

 branchName="CSE";

 System.out.println(rollNumber);

 System.out.println(branchName);

34 | P a g e

 }

 Student(int rollNumber,String branchName)

 {

 this.rollNumber=rollNumber;

 this.branchName=branchName;

 System.out.println(rollNumber);

 System.out.println(branchName);

 }

public static void main(String args[])

{

 Student ravi=new Student();

 System.out.println("-----------");

 Student seetha=new Student(101);

 System.out.println("-----------");

 Student balu=new Student(102,"CSE");

}

}

Output:

javac Student.java

java Student

100

CSE

101

CSE

102

CSE

Inheritance(IS A Relation-ship): The process of taking the features(data members and class)

from one class to another class is known as inheritance

The class which is giving the features is known as base/parentclass.

The class which is taking the features is known as derived/child/subclass.

Inheritance represents the IS-A relationship which is also known as a parent-child relationship.

Advantages of INHERITANCE:

I. Application development time is veryless.

II. Redundancy (repetition) of the code is reducing. Hence we can get less memory cost and

consistent results.

Types of INHERITANCES :

Based on taking the features from base class to the derived class, in JAVA we have five types of

inheritances. They are as follows:

Single Inheritance :

35 | P a g e

In single inheritance, subclasses inherit the features of one superclass. In image below, the class

A serves as a base class for the derived class B.

Heirarcial Inheritance :

In Hierarchical Inheritance, one class serves as a superclass (base class) for more than one sub

class.In below image, the class A serves as a base class for the derived class B,C and D.

Multilevel Inheritance :

 In Multilevel Inheritance, a derived class will be inheriting a base class and as well as the

derived class also act as the base class to other class. In below image, the class A serves as a base

class for the derived class B, which in turn serves as a base class for the derived class C.

Multiple Inheritance :

 In Multiple inheritance ,one class can have more than one superclass and inherit features from

all parent classes.

Java does not support multiple inheritance with classes.

 In java, we can achieve multiple inheritance only through Interfaces.

 In image below, Class C is derived from class A and B.

https://www.geeksforgeeks.org/java-and-multiple-inheritance/
https://www.geeksforgeeks.org/java-and-multiple-inheritance/
http://quiz.geeksforgeeks.org/interfaces-in-java/

36 | P a g e

Hybrid Inheritance:

 It is a mixture of two or more of the above types of inheritance.

Since java doesn’t support multiple inheritance with classes, the hybrid inheritance is also not

possible with classes.

 In java, we can achieve hybrid inheritance only through Interfaces.

Singleinheritance.java :

class Mobile_Version1

{

 void smsservice()

 {

 System.out.println("sms service");

 }

 void callingservice()

 {

 System.out.println(" calling service");

 }

}

class Mobile_Version2 extends Mobile_Version1

{

 void cameraservice()

http://quiz.geeksforgeeks.org/interfaces-in-java/

37 | P a g e

 {

 System.out.println("camera service");

 }

}

class Single_inheritance

{

public static void main(String args[])

{

Mobile_Version2 m=new Mobile_Version2();

System.out.println("Calling Mobile_Version1 class methods through Mobile_Version2 object ");

m.cameraservice();

m.smsservice();

m.callingservice();

}

}

Output :

Calling Mobile_Version1 class methods through Mobile_Version2 object

camera service

sms service

calling service

Heirarcial Inheritance :

In Hierarchical Inheritance, one class serves as a superclass (base class) for more than one sub

class.In below image, the class A serves as a base class for the derived class B,C and D.

Heirarcial_inheritance.java :

class MobileVersion1

{

void smsservice()

 {

 System.out.println("sms service");

 }

void calling_service()

 {

 System.out.println("calling service");

 }

}

class MobileVersion2 extends MobileVersion1

38 | P a g e

{

 voidcameraservice()

 {

 System.out.println("camera service");

 }

}

class MobileVersion3 extends MobileVersion1

{

 voidfingerprint_service()

 {

 System.out.println("finger print service");

 }

}

class MobileVersion4 extends MobileVersion1

{

 void facerecognization_service()

 {

 System.out.println("facerecognization service");

 }

}

class Heirarcial_inheritance

{

public static void main(String args[])

{

MobileVersion1 m1=new MobileVersion1();

System.out.println("mobile version1 services");

m1.calling_service();

m1.smsservice();

MobileVersion2 m2=new MobileVersion2();

System.out.println("\nmobile version2 services:-");

m2.calling_service();

m2.smsservice();

m2.cameraservice();

MobileVersion3 m3=new MobileVersion3();

System.out.println("\nmobile version3 services:-");

m3.calling_service();

m3.smsservice();

m3.fingerprint_service();

MobileVersion4 m4=new MobileVersion4();

System.out.println("\nmobile version4 services:-");

m4.calling_service();

m4.smsservice();

m4.facerecognization_service();

}

39 | P a g e

}

Output :

javac Heirarcial_inheritance.java

java Heirarcial_inheritance

mobile version1 services

calling service

sms service

mobile version2 services:-

calling service

sms service

camera service

mobile version3 services:-

calling service

sms service

finger print service

mobile version4 services:-

calling service

sms service

facerecognization service

This Keyword :

The main purpose of using this keyword is to differentiate the formal parameter and class

members of class, whenever the formal parameter and data members of the class are similar then

jvm get ambiguity

To differentiate between formal parameter and data member of the class, the data member of the

class must be preceded by "this".

"this" keyword can be use in two ways.

• this .variablename-this is used for calling current class variable

• this() (this is used for calling current class constructor

• this.methodname()-this is used to call current class method

 It can be used to refer current class instance variable.

 this() can be used to invoke current class constructor.

 It can be used to invoke current class method (implicitly)

Student.java :

class Student

{

int rollNumber;

String branchName;

 Student(int rollNumber,String branchName)

 {

 this.rollNumber=rollNumber;

 this.branchName=branchName;

 }

public static void main(String args[])

{

Student s1=new Student(100,"CSE");

40 | P a g e

System.out.println(s1.rollNumber);

System.out.println(s1.branchName);

}

}

javac Student.java

java Student

100

CSE

Super Keyword :

Super keyword is placing an important role in three places. They are at variable level, at method

level and at constructor level.

Super at variable level :

Whenever we inherit the base class variables into derived class, there is a possibility that

base class variables are similar to derived class members.

In order to distinguish the base class variables with derived class variables in the derived

class, the base class members will be preceded by a keyword super.

Syntax for super at variable level super.variablename;

Super at method level :

Whenever we inherit the base class methods into the derived class, there is a possibility that

base class methods are similar to derived methods.

To differentiate the base class methods with derived class methods in the derived class, the

base class methods must be preceded by a keyword super.

Syntax :for super at method level: super.methodname();

Super at Constructor Level :

super keyword can also be used to invoke the parent class constructor

Syntax super();

MobileVersion2.java :

class MobileVersion1

{

String modelName="Nokia1600";

int price=2000;

 public void display()

 {

 System.out.println("MobileVerison1 features");

 System.out.println(modelName);

 System.out.println(price);

 }

}

class MobileVersion2 extends MobileVersion1

{

String modelName="Redmi 10";

int price=10000;

 public void display()

 {

41 | P a g e

 System.out.println("MobileVerison2 features");

 System.out.println(modelName);

 System.out.println(price);

 System.out.println("MobileVerison1 features");

 System.out.println(super.modelName);

 System.out.println(super.price);

 super.display();

 }

public static void main(String args[])

{

MobileVersion2 m1=new MobileVersion2();

m1.display();

}

}

javac MobileVersion2.java

java MobileVersion2

MobileVerison2 features

Redmi 10

10000

MobileVerison1 features

Nokia1600

2000

MobileVerison1 features

Nokia1600

2000

How to use super keyword in child class to access constructor in parent class with example.

//Accessing Super class constructor from child class

class MobileVersion1

{

int a=20;

MobileVersion1()

{

System.out.println("Super class constructor");

}

 void callingService()

 {

 System.out.println("calling serivce");

 }

 void smsService()

 {

 System.out.println("sms serivce");

 }

42 | P a g e

}

class MobileVersion2 extends MobileVersion1

{

MobileVersion2()

{

super();//Accessing super class constructor from child class

System.out.println("Sub class constructor");

}

 void cameraService()

 {

 System.out.println("camera service");

 }

public static void main(String args[])

{

MobileVersion2 m1=new MobileVersion2();

m1.cameraService();

m1.callingService();

m1.smsService();

System.out.println(m1.a);

}

}

Output :

javac MobileVersion2.java

java MobileVersion2

Super class constructor

Sub class constructor

camera service

calling serivce

sms serivce

20

What the difference between ‘extends’ and ‘implements’ where can we use these keywords.

S.No. Extends Implements

1.

By using “extends” keyword a class can

inherit another class, or an interface can

inherit other interfaces

By using “implements” keyword a class can

implement an interface

2.

It is not compulsory that subclass that

extends a superclass override all the

methods in a superclass.

It is compulsory that class implementing an

interface has to implement all the methods of

that interface.

3.
Only one superclass can be extended by a

class.

A class can implement any number of an

interface at a time

4.
Any number of interfaces can be extended

by interface.

An interface can never implement any other

interface

43 | P a g e

Association (Has a Relation-ship) :

Association is relation between two separate classes which establishes through their Objects.

Association can be one-to-one, one-to-many, many-to-one, many-to-many.

Two forms of Associations are Composition and Aggregation

Aggregation is a kind of association

Aggregation vs Composition

1. Dependency: Aggregation implies a relationship where the child can exist independently of the

parent. For example, Bank and Employee, delete the Bank and the Employee still exist. whereas

Composition implies a relationship where the child cannot exist independent of the parent.

Example: Human and heart, heart don’t exist separate to a Human

2. Type of Relationship: Aggregation relation is “has-a” and composition is “part-of” relation.

Aggregation Example (has a relation ship)

class Author

{

 String authorName;

 int age;

 String place;

 // Author class constructor

 Author(String name, int age, String place)

 {

 this.authorName = name;

 this.age = age;

 this.place = place;

 }

}

class Book

{

 String name;

 int price;

 // author details

 Author auther;

 Book(String n, int p, Author auther)

 {

 this.name = n;

 this.price = p;

 this.auther = auther;

 }

 public static void main(String[] args) {

 Author auther = new Author("John", 42, "USA");

 Book b = new Book("Java for Begginer", 800, auther);

 System.out.println("Book Name: "+b.name);

 System.out.println("Book Price: "+b.price);

 System.out.println("------------Auther Details----------");

 System.out.println("Auther Name: "+b.auther.authorName);

44 | P a g e

 System.out.println("Auther Age: "+b.auther.age);

 System.out.println("Auther place: "+b.auther.place);

 }

}

Output :

javac Book.java

java Book

Book Name: Java for Begginer

Book Price: 800

------------Auther Details----------

Auther Name: John

Auther Age: 42

Auther place: USA

MethodOverRiding :

When super class and sub class method has same name the subclass method overrides the super

class method is known as method over riding.

What are the benefits of method overriding in java.

The main advantage of method overriding is that it allows the super class to define methods

which would be common to all of the subclasses and it also allows the subclasses to define their

own specific implementation of some or all of those methods.

/*When super class and sub class contains

same method overriding super class method with the sub class

is knwon method over riding

*/

 class MobileVersion1

{

 public void hotSpot()

 {

 System.out.println("5 meters");

 }

}

class MobileVersion2 extends MobileVersion1

{

 public void hotSpot()

 {

 System.out.println("10 meters");

 }

 public static void main(String args[])

{

MobileVersion2 m=new MobileVersion2();

m.hotSpot();

}

45 | P a g e

}

Output :

javac MobileVersion2.java

java MobileVersion2

10 meters

Static keyword :

In Java, static keyword is mainly used for memory management. It can be used with variables,

methods, blocks and nested classes. It is a keyword which is used to share the same variable or

method of a given class.

Basically, static is used for a constant variable or a method that is same for every instance of a

class. The main method of a class is generally labeled static.

In order to create a static member (block, variable, method, nested class), you need to precede its

declaration with the keyword static. When a member of the class is declared as static, it can be

accessed before the objects of its class are created, and without any object reference.

Static block :

Java supports a special block, called static block which can be used for static variable

initializations of a class. This code inside static block is executed only once. Static block calling

before main method

Syntax :

static

{

//static block

}

Static Variable :

When you declare a variable as static, then a single copy of the variable is created and divided

among all objects at the class level. Static variables are global variables. Basically, all the

instances of the class share the same static variable. Static variables can be created at class-level

only.

Generally Static variables are called by

Classname.variablename;

Static method :

When a method is declared with the static keyword, it is known as a static method. The most

common example of a static method is the main() method.

 We can access static methods using classname

Static methods can be called by classname.methodname()

Syntax :

Classname.methodname();

Static keyword example

//static Block Level will execute before main

// static varaible can be called byclassname.variable

//staticmethod canbe called byclassname.methodname()

//static Block Level will execute before main

class AccountHolder

{

https://www.edureka.co/blog/java-tutorial/#variables
https://www.edureka.co/blog/instance-variable-in-java/
https://www.edureka.co/blog/instance-variable-in-java/
https://www.edureka.co/blog/java-tutorial/#obj
https://www.edureka.co/blog/java-objects-and-classes/

46 | P a g e

long accountNumber;

static String bankName="SBI";

static long pinCode=530016L;

 static

 {

 System.out.println("library files loading");

 }

 static void pinCode()

 {

 System.out.println(pinCode);

 }

public static void main(String args[])

{

System.out.println(AccountHolder.bankName);

AccountHolder.pinCode();

}

}

Output :

javac AccountHolder.java

java AccountHolder

library files loading

SBI

530016

Polymorphism :

Illustrate dynamic binding(Dynamic polymorphism) and static binding(Static

polymorphism) in java.

Polymorphism: Polymorphism in Java is a concept by which we can perform a single action in

different ways. Polymorphism is derived from 2 Greek words: poly and morphs. The word "poly"

means many and "morphs" means forms. So polymorphism means many forms.

There are two types of polymorphism in Java: compile-time polymorphism and runtime

polymorphism. We can perform polymorphism in java by method overloading and method

overriding.

If you overload a static method in Java, it is the example of compile time polymorphism. Here,

we will focus on runtime polymorphism in java.

Static polymorphism or Compile time polymorphism or early binding

In static polymorphism method invocation is determined at compile time

Static polymorphism is known as early binding because method invocation is determined early

by the compiler at the compile time

StaticPolymorphism.java :

class StaticPolymorphism

{

 public static void add(int a ,int b)

 {

 int c=a+b;

47 | P a g e

 System.out.println(c);

 }

 public static void add(double a,double b)

 {

 double c=a+b;

 System.out.println(c);

 }

public static void main(String args[])

{

StaticPolymorphism s=new StaticPolymorphism();

s.add(10,20);

s.add(10.4,23.5);

}

}

javac StaticPolymorphism.java

java StaticPolymorphism

30

33.9

Dynamic Polymorphism or run time polymorphism or late binding

method invocation is determined by the JVM not compiler, it is known as runtime

polymorphism.

dynamic polymorphism is known as late binding because method invocation is determined late

at runtime by the jvm.

Method Overriding is an example of Dynamic polymorphism :

MobileVersion2.java

 class MobileVersion1

{

 public void hotSpot()

 {

 System.out.println("5 meters");

 }

}

class MobileVersion2 extends MobileVersion1

{

 public void hotSpot()

 {

 System.out.println("10 meters");

 }

 public static void main(String args[])

{

MobileVersion2 m=new MobileVersion2();

m.hotSpot();

}

48 | P a g e

}

Output

javac MobileVersion2.java

java MobileVersion2

10 meters

Final Keyword :

final keyword is used in different contexts. First of all, final is a non-access modifier applicable

only to a variable, a method or a class.Following are different contexts where final is used

Final variable:

When a variable is declared with final keyword, its value can’t be modified, essentially, a

constant.

Final_Variable.java

class Final_Variable

{

public static void main(String args[])

{

final int pi=3.14;

int a=20;//complete time error final variable cannot be reintiantiated

}

}

Output :

compile time error

Final method:

When a method declared as final method cannot be overridden by the sub class

Final_Method.java

 class MobileVersion1

{

 final public void hotSpot()

 {

 System.out.println("5 meters");

 }

}

class MobileVersion2 extends MobileVersion1

https://www.geeksforgeeks.org/access-and-non-access-modifiers-in-java/

49 | P a g e

{

 public void hotSpot()

 {

 System.out.println("10 meters");

 }

 public static void main(String args[])

{

MobileVersion2 m=new MobileVersion2();

m.hotSpot();

}

}

Output :

compile time error

MobileVersion2.java:15: error: hotSpot() in MobileVersion2 cannot override hotSpot() in

MobileVersion1

 public void hotSpot()

 overridden method is final

Final class:

When ever a parent class declared as final class its child class or sub class cannot be inherit the

parent class

Child.java

final class Parent

{//parent class

}

class Child extends Parent

{//child class

public static void main(String args[])

{

Child c=new Child();

}

}

Output :

javac Final_Class.java

java Final_Class

Compile time error

Final class cannot be inherited

Access modifiers or Access specifiers in java

Access specifiers define the boundary and scope to access the method, variable, and class etc.

Java has defines four type of access specifiers such as:-

1. public

50 | P a g e

2. private

3. protected

4. default

These access specifiers are defines the scope for variables/methods. If you are not defining any

access specifier so it will be as 'default' access specifier for variables/methods.

1. public access specifier:- The access level of a public modifier is everywhere. It can be

accessed from within the class, outside the class, within the package and outside the package.

Ex:-

public int number;

2. private access specifier:- The access level of a private modifier is only within the class. It

cannot be accessed from outside the class.

3. protected access specifier:- The access level of a protected modifier is within the package

and outside the package through child class. If you do not make the child class, it cannot be

accessed from outside the package.

4. default access specifier:- Actually, there is no default access modifier; the absence of a

modifier is treated as default. The access level of a default modifier is only within the package. It

cannot be accessed from outside the package. If you do not specify any access level, it will be the

default..

Classes belonging to other packages cannot access. That is why default access modifier is known

as package level access.

Access Specifiers/modifiers scope in java.

Access

Modifier

within

class

within

package

outside package by subclass

only

outside

package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Package:

Package is a collection of similar classes,interfaces, and sub packages

simply package is a directory or folder

uses of packages are :

1) Java package is used to categorize the classes

and interfaces so that they can be easily maintained.

2) Java package provides access protection.

Types of packages :

There are two types of packages are there

in java

51 | P a g e

1.built in packages:

2. user defined packages

Built in packages: these are predefined packages

which are present after installing jdk

example

import java.io.*;

import java.applet.*

import java.sql.*;

user defined packages :these are defined by the user

creating user defined package

syntax:

package packagename;

how to compile package program in java

javac -d . filename.java

-d creates package

how to run package program

java packagename.classname

importing userdefined packages :

1. Import packagename.*(imports allclasses in the package)

2. Import packagename.classname;(import particular class name)

CSE.java:

package college;

class CSE

{

public static void main(String args[])

{

System.out.println("CSE is the branch is part of college");

}

}

output:

javac -d . CSE.java

java College.CSE

CSE is the branch is part of college

Abstract class:

Abstraction is a process of hiding the implementation details and showing only functionality to

the user.

There are two types of classes present in java

1.Concrete classes

2.Abstract classes

A concrete class is one which is containing fully defined methods or implemented method.

A class that is declared with abstract keyword, is known as abstract class.

 It can have abstract and non-abstract methods.

 It cannot be instantiated. We cannot create objects to abstract class

Abstract class can contain 0 or more abstract methods

52 | P a g e

We can achieve 0 to 100% abstraction using abstract class;

Syntax:

abstract class <classname>

{

}

Abstract methods: A method which is declared as abstract and does not have implementation is

known as an abstract method.An abstract method methodis an incomplete method

Abstract method syntax :

abstract returntype methodname();

AbstractBankDemo.java :

abstract class Bank

{

public abstract void getRateOfInterest();

 public void withdraw(int balance,int debit)

 {

 int withdraw=balance-debit;

 }

}

class SBI extends Bank

{

 public void getRateOfInterest()

 {

 System.out.println("SBI Rate of interest is 6%");

 }

}

class HDFC extends Bank

{

 public void getRateOfInterest()

 {

 System.out.println("SBI Rate of interest is 8%");

 }

}

class AbstractBankDemo

{

public static void main(String args[])

{

SBI s=new SBI();

s.getRateOfInterest();

HDFC h=new HDFC();

h.getRateOfInterest();

53 | P a g e

}

}

Output :

javac AbstractBankDemo.java

java AbstractBankDemo

Interest rate of SBI 6%

Interest rate of HDFC 8%

Interface :

Interface is similar to class which is collection of public static final variables (constants) and

abstract methods.

The interface is a mechanism to achieve fully abstraction in java. There can be only abstract

methods in the interface. It is used to achieve fully abstraction and multiple inheritance in

Java.

• It is used to achieve fully abstraction(100% abstraction).

• By using Interface, you can achieve multiple inheritance in java.

• It is implicitly abstract. So we no need to use the abstract keyword when declaring an

interface.

• Each method in an interface is also implicitly abstract, so the abstract keyword is not

needed.

• Methods in an interface are implicitly public.

• All the data members of interface are implicitly public static final.

• You can not instantiate an interface which means we cannot create object directly to

interface.

• It does not contain any constructors.

• All methods in an interface are abstract.

• Interface can not contain instance fields. Interface only contains public static final

variables.

• Interface is can not extended by a class; it is implemented by a class.

• Interface can extend multiple interfaces. It means interface support multiple

inheritance

Interface Syntax:

interface <interfacename>

{

 public static final datatype variablename=value;

 //Any number of final, static fields

 abstract returntype methodname(list of parameters or no parameters);

 //Any number of abstract method declarations

}

Rules for implementation interface :

• A class can implement more than one interface at a time.

• A class can extend only one class, but implement many interfaces.

• An interface can extend another interface, similarly to the way that a class can extend

another class.

54 | P a g e

• Abstract class Interface

1) Abstract class can have abstract and non-

abstract methods.
Interface can have only abstract methods.

2) Abstract class doesn't support multiple

inheritance.
Interface supports multiple inheritance.

3) Abstract class can have final, non-final, static

and non-static variables.

Interface has only static and final

variables.

4) The abstract keyword is used to declare abstract

class.

The interface keyword is used to declare

interface.

5) An abstract class can be extended using keyword

"extends".

An interface can be implemented using

keyword "implements".

6) A Java abstract class can have class members

like private, protected, etc.

Members of a Java interface are public by

default.

Simply, abstract class achieves partial abstraction (0 to 100%) whereas interface achieves fully

abstraction (100%).

How Multiple inheritance achieved in java :

Child.java :

interface Mother

{

 public static final float height=5.2f;

public abstract void height();

}

interface Father

{

public static final float height=6.2f;

public abstract void height();

}

class Child implements Mother,Father

{

public void height()

{

System.out.println((Mother.height+Father.height)/2);

}

public static void main(String args[])

{

Child c=new Child();

c.height();

}

}

55 | P a g e

javac Child.java

java Child

5.7

What is interface inheritance in Java? How it can be inherited? Explain with example.

Or

How to access an interface from an interface write in brief with example to access.

Interface Inheritence :

Interface extends another interface is known as interface inheritance

BankDemo.java :

interface Bank

{

public abstract void withdrawService();

public abstract void depositService();

}

interface SBI extends Bank

{

public abstract void loanService();

}

class BankDemo implements SBI

{

 public void withdrawService()

 {

 System.out.println("withdraw service implementation");

 }

 public void depositService()

 {

 System.out.println("deposit service implementation");

 }

 public void loanService()

 {

 System.out.println("loan service implementation");

 }

public static void main(String args[])

{

BankDemo b=new BankDemo();

b.withdrawService();

b.depositService();

b.loanService();

}

}

Output :

javac BankDemo.java

java BankDemo

java BankDemo

withdraw service implementation

56 | P a g e

deposit service implementation

loan service implementation

Functional Interface :

A functional interface is an interface that contains only one abstract method. They can have

only one functionality to exhibit.

Runnable, ActionListener, Comparable are some of the examples of functional interfaces.

Before Java 8, we had to create anonymous inner class objects or implement these interfaces.

It can have any number of default, static methods but can contain only one abstract method.

FunctionalInterfaceExample.java

interface sayable{

 void say(String msg);

}

public class FunctionalInterfaceExample implements sayable{

 public void say(String msg){

 System.out.println(msg);

 }

 public static void main(String[] args) {

 FunctionalInterfaceExample fie = new FunctionalInterfaceExample();

 fie.say("Hello there");

 }

}

Output :

javac FunctionalInterfaceExample.java

 java FunctionalInterfaceExample

Hello there

How do you declare static method in interface and write it’s syntax. How to access it form

main method.

Static Methods in Interface are those methods, which are defined in the interface with the

keyword static. Unlike other methods in Interface, these static methods contain the complete

definition of the function and since the definition is complete and the method is static, therefore

these methods cannot be overridden or changed in the implementation class.

// Java program to demonstrate

// static method in Interface.

interface NewInterface {

 // static method

 static void hello()

 {

 System.out.println("Hello, New Static Method Here");

 }

 // Public and abstract method of Interface

 void overrideMethod(String str);

57 | P a g e

}

// Implementation Class

public class InterfaceDemo implements NewInterface {

 public static void main(String[] args)

 {

 InterfaceDemo interfaceDemo = new InterfaceDemo();

 // Calling the static method of interface

 NewInterface.hello();

 // Calling the abstract method of interface

 interfaceDemo.overrideMethod("Hello, Override Method here");

 }

 // Implementing interface method

 @Override

 public void overrideMethod(String str)

 {

 System.out.println(str);

 }

}

Output:

Hello, New Static Method Here

Hello, Override Method here

Class Casting :

A process of converting one data type to another is known as Typecasting

In java, there are two types of casting namely up casting and down casting as follows:

Upcasting :

Assigning the object of subclass to parent class reference is known as Upcasting

Upcasting is done by the system implicitly

DownCasting :

Downcasting: assigning the Object or object reference of super class to the sub class reference

is known as downcasting

Downcasting cannot done implicitly

Downcastingmust done by the programmer explicitly

Downcasting always need upcasting

ClassCasting.java :

class Mobile

{

 public void calling()

 {

 System.out.println("Calling from nokia 1600");

 }

58 | P a g e

 public void smsService()

 {

 System.out.println("smsservice");

 }

}

class Samsung extends Mobile

{

 public void camera()

 {

 System.out.println("camera");

 }

}

class ClassCasting

{

public static void main(String args[])

{

System.out.println("Upcasting");

Samsung s=new Samsung();

Mobile m=s;//assigning child class referece to parentclass type

m.calling();

m.smsService();

System.out.println("Downcasting");

Mobile m1=new Samsung();

Samsung s1=(Samsung)m1;// assigning parent reference to sub class type

s1.camera();

s1.calling();

}

}

Output :

javac ClassCasting.java

java ClassCasting

Upcasting

Calling from nokia 1600

smsservice

Downcasting

camera

Calling from nokia 1600

Object Cloning in java :

The object cloning is a way to create exact copy of an object. The clone() method of Object

class is used to clone an object.

The java.lang.Cloneable interface must be implemented by the class whose object clone we

want to create. If we don't implement Cloneable interface, clone() method generates

CloneNotSupportedException.:

The clone() method is defined in the Object class. Syntax of the clone() method is as follows:

1. protected Object clone() throws CloneNotSupportedException

Student.java :

59 | P a g e

class Student implements Cloneable

{

String rollNumber;

int age;

 Student(String rollNumber,int age)

 {

 this.rollNumber=rollNumber;

 this.age=age;

 }

 public Object clone()throws CloneNotSupportedException

 {

 return super.clone();

 }

public static void main(String args[])throws CloneNotSupportedException

{

Student s1=new Student("20kd1a1567",22);

System.out.println("S2 hash code="+s1.hashCode());

Student s2=(Student)s1.clone();

System.out.println(s2.rollNumber);

System.out.println(s2.age);

System.out.println("s2 hash code="+s2.hashCode());

}

}

OUTPUT :

S2 hash code=746292446

20kd1a1567

22

s2 hash code=140435067

Nested Classes:

Java nested class is a class which is declared inside the another class.

We use inner classes to logically group classes in one place so that it can be more readable and

maintainable.

Nested class cannot exit independently without outer class

advantages:

nested classes enables you to group classes in a single pace.

It creates more read ability of the code.

There are two types of nested classes in java

1.Non Static nested class

2.Static nested class

Non static nested class: non static inner class present inside outer class is known as Non static

nested class

Regular inner class or non static class object creation :

Outer_Class outer = new Outer_Class();

Outer_Class.Inner_Class inner = outer.new Inner_Class();

60 | P a g e

NonStatic nested class again divided into three types

1.regular inner class:non static inner class present inside outer classknown as regualra inner class

Regular innerclass can access private,static,non static memebrs of outer class

2.local method inner class: inner class present inside local method of outer class is known as

local method inner class

3Anonymous inner class:inner class which has no name is known as Anonymous inner class

Static inner class :

static class present inside the outer class is known as static inner classStatic inner can can access

only static members of outer class. It cannot access non static memebrs of outer class

static class object creation :

OuterClass.StaticNestedClass nestedObject =new OuterClass.StaticNestedClass();

Regular inner class example :

Outer.java :

class Outer

{

 class Inner

{

 public void m1()

 {

 System.out.println(" regular Innerclass method");

 }

}

public static void main(String args[])

{

Outer o=new Outer();

Outer.Inner i=o.new Inner();

i.m1();

}

}

javac Outer.java

Java Outer

regular Innerclass method

Static inner class example :

class OuterClass

{

static int x=10;

 static class InnerClass

 {

 public void display()

 {

 System.out.println(x);

 }

 }

public static void main(String arg[])

61 | P a g e

{

OuterClass.InnerClass o=new OuterClass.InnerClass();

o.display();

}

}

java OuterClass.java

java OuterClass

10

62 | P a g e

UNIT-3 Strings and Collections

String

Generally, String is a sequence of characters. But in Java, string is an object that represents a

sequence of characters. The java.lang.String class is used to create a string object.

String is a sequence of characters. In java, objects of String are immutable which means a

constant and cannot be changed once created.

There are two ways to create string in Java:

• String literal

String s = “GeeksforGeeks”;

• Using new keyword

String s = new String (“GeeksforGeeks”);

The Java String is immutable which means contents of the string cannot be changed.

Whenever we change any string, a new instance is created.

For creating mutable strings, we use StringBuffer and StringBuilder classes.

Each time you create a string literal, the JVM checks the "string constant pool" first. If the string

already exists in the pool, a reference to the pooled instance is returned. If the string doesn't exist

in the pool, a new string instance is created and placed in the pool. For example:

1. String s1="Welcome";

2. String s2="Welcome";//It doesn't create a new instance.

In the above example, only one object will be created. Firstly, JVM will not find any string

object with the value "Welcome" in string constant pool, that is why it will create a new object.

After that it will find the string with the value "Welcome" in the pool, it will not create a new

object but will return the reference to the same instance.

63 | P a g e

1. String s=new String("Welcome");//creates two objects and one reference variable

In such case, JVM will create a new string object in normal (non-pool) heap memory, and the

literal "Welcome" will be placed in the string constant pool. The variable s will refer to the

object in a heap (non-pool).

Java String class methods :

The java.lang.String class provides many useful methods to perform operations on sequence of

char values.

No. Method Description

1 charAt(int index) returns char value for the particular index

2 length() returns string length

3 substring(int beginIndex) returns substring for given begin index.

4 substring(int beginIndex, int

endIndex)

returns substring for given begin index and end index.

5 contains(CharSequence s) returns true or false after matching the sequence of char

value.

6 equals(Object another) checks the equality of string with the given object.

7 isEmpty() checks if string is empty.

8 concat(String str) concatenates the specified string.

9 replace(char old, char new) replaces all occurrences of the specified char value.

10 equalsIgnoreCase(String another) compares another string. It doesn't check case.

11 indexOf(String substring) returns the specified substring index.

13 toLowerCase() returns a string in lowercase.

14 toUpperCase() returns a string in uppercase.

15 trim() removes beginning and ending spaces of this string.

16 valueOf(int value) converts given type into string. It is an overloaded method.

Immutable String in Java :

In java, string objects are immutable. Immutable simply means unmodifiable or unchangeable.

Once string object is created its data or state can't be changed but a new string object is created.

https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-length
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-contains
https://www.javatpoint.com/java-string-equals
https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-trim
https://www.javatpoint.com/java-string-valueof

64 | P a g e

Let's try to understand the immutability concept by the example given below:

1. class Testimmutablestring{

2. public static void main(String args[]){

3. String s="Sachin";

4. s.concat(" Tendulkar");//concat() method appends the string at the end

5. System.out.println(s);//will print Sachin because strings are immutable objects

6. }

7. }

Output:Sachin

Why string objects are immutable in java?

Because java uses the concept of string literal.Suppose there are 5 reference variables,all referes to

one object "sachin".If one reference variable changes the value of the object, it will be affected to

all the reference variables. That is why string objects are immutable in java.

Java String compare :

There are three ways to compare string in java:

1. By equals() method

2. By = = operator

3. By compareTo() method

1) String compare by equals() method

The String equals() method compares the original content of the string. It compares values of string

for equality. String class provides two methods:

o equals(Object another) compares this string to the specified object.

o equalsIgnoreCase(String another) compares this String to another string, ignoring case.

2) String compare by == operator

The = = operator compares references not values.

3) String compare by compareTo() method

The String compareTo() method compares values lexicographically based on ascii values and

returns an integer value that describes if first string is less than, equal to or greater than second

string.

Suppose s1 and s2 are two string variables. If:

o s1 == s2 :0

o s1 > s2 :positive value

o s1 < s2 :negative value

StringBuffer :

Java StringBuffer class is used to create mutable (modifiable) string. The StringBuffer class in java

is same as String class except it is mutable i.e. it can be changed.

Constructor Description

StringBuffer() creates an empty string buffer with the initial

capacity of 16.

String Buffer Methods :

length() and capacity(): The length of a StringBuffer can be found by the length() method,

while the total allocated capacity can be found by the capacity() method.

65 | P a g e

append(String s): It is used to add text at the end of the existence text. Here are a few of its

forms:

insert(int index, String str): It is used to insert text at the specified index position. These are a

few of its forms:

reverse(): It can reverse the characters within a StringBuffer object using reverse().This

method returns the reversed object on which it was called.

delete(int startIndex,int endIndex):

 is used to delete the string from specified startIndex and endIndex.

ensureCapacity(int minimum capacity):

is used to ensure the capacity at least equal to the given minimum.

 indexOf(String substring) returns the specified substring index.

replace(int startIndex,int endIndex,String str):

is used to replace the string from specified startIndex and endIndex.

Difference between String and String Buffer :

No. String StringBuffer

1) String class is immutable. StringBuffer class is mutable.

2)

String is slow and consumes more memory when you

concat too many strings because every time it creates

new instance.

StringBuffer is fast and consumes

less memory when you concat

strings.

StringBuilder

Java StringBuilder class is used to create mutable (modifiable) string. The Java StringBuilder

class is same as StringBuffer class except that it is non-synchronized.

Constructor Description

StringBuilder() creates an empty string Builder with the initial capacity of 16.

Important methods of StringBuilder class :

Method Description

 append(String s) is used to append the specified string with this string.

insert(int offset, String s)
is used to insert the specified string with this string at the

specified position.

replace(int startIndex, int endIndex,

String str)

is used to replace the string from specified startIndex and

endIndex.

 delete(int startIndex, int endIndex)
is used to delete the string from specified startIndex and

endIndex.

 reverse() is used to reverse the string.

 capacity() is used to return the current capacity.

 ensureCapacity(int

minimumCapacity)

is used to ensure the capacity at least equal to the given

minimum.

 charAt(int index) is used to return the character at the specified position.

https://www.geeksforgeeks.org/stringbuffer-append-method-in-java-with-examples/
https://www.geeksforgeeks.org/stringbuffer-reverse-method-in-java/
https://www.javatpoint.com/java-string-indexof

66 | P a g e

 length()
is used to return the length of the string i.e. total number

of characters.

 substring(int beginIndex)
is used to return the substring from the specified

beginIndex.

substring(int beginIndex, int

endIndex)

is used to return the substring from the specified

beginIndex and endIndex.

Difference between String Buffer and String Builder :

 String Buffer String Builder

1)

StringBuffer is synchronized i.e. thread safe.It

means two threads can't call the methods of

StringBuffer simultaneously.

StringBuilder is non-synchronized i.e. not

thread safe. It means two threads can call the

methods of StringBuilder simultaneously.

2)
StringBuffer is less efficient

thanStringBuilder.

StringBuilder is more efficient than

StringBuffer.

StringTokenizer :

The java.util.StringTokenizer class allows you to break a string into tokens.

It is simple way to break string.

StringTokenizer is present in util package

Methods of StringTokenizer class

The 6 useful methods of StringTokenizer class are as follows:

Public method Description

boolean hasMoreTokens() checks if there is more tokens available.

String nextToken() returns the next token from the StringTokenizer object.

String nextToken(String delim) returns the next token based on the delimeter.

boolean hasMoreElements() same as hasMoreTokens() method.

Object nextElement() same as nextToken() but its return type is Object.

int countTokens() returns the total number of tokens.

StringTokeniser.java

import java.util.StringTokenizer;

class StringTokeniserDemo

{

public static void main(String args[])

{

StringTokenizer str=new StringTokenizer("Java is Object Oriented Programming Language ");

System.out.println("no of tokens="+str.countTokens());

 while(str.hasMoreTokens())

 {

 System.out.println(str.nextToken());

 }

67 | P a g e

}

}

Output :

java Stringtokeniser

no of tokens=4

Java

is

Object

 Oriented

Programming

Language

Collections in Java :

 A Collection represents a single unit of objects, i.e., a group.

The Collection in Java is a framework that provides architecture to store and manipulate the

group of objects.

Java Collections can achieve all the operations that you perform on a data such as searching,

sorting, insertion, manipulation, and deletion.

Advantage of collections over arrays is arrays are fixed in size we cannot increased or

decreased size based on our requirement but collections are growable in nature based on our

requirement we can increase or decrease size

Frame work:

 provides readymade architecture. It represents a set of classes and interfaces.

The Collection framework represents a unified architecture for storing and manipulating a

group of objects. It has:

1. Interfaces and its implementations, i.e., classes

2. Algorithm

Hierarchy of Collection Framework ;

The java.util package contains all the classes and interfaces for the Collection framework.

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/interface-in-java

68 | P a g e

Iterable Interface :

The Iterable interface is the root interface for all the collection classes. The Collection interface

extends the Iterable interface and therefore all the subclasses of Collection interface also

implement the Iterable interface.

Methods of Iterable Interface

1. Iterator<T> iterator()

It returns the iterator over the elements of type T.

Methods of Collection interface :

There are many methods declared in the Collection interface. They are as follows:

No. Method Description

1 add(E e) It is used to insert an element in this collection.

2 remove(Object element) It is used to delete an element from the collection.

3 size() It returns the total number of elements in the collection.

4 clear() It removes the total number of elements from the collection.

5 contains(Object element) It is used to search an element.

6 public Iterator iterator() It returns an iterator.

7 equals(Object element) It matches two collections.

List Interface: It is present in java.util package.

69 | P a g e

List interface is the child interface of Collection interface.

 It inhibits a list type data structure in which we can store the ordered collection of objects.

 It can have duplicate values.

List interface is implemented by the classes ArrayList, LinkedList, Vector, and Stack.

There are various methods in List interface that can be used to insert, delete, and access the

elements from the list.

The classes that implement list interface are:

ArrayList

• The ArrayList class implements the List interface.

• It uses a dynamic array to store elements

• It can store the duplicate element of different data types.

• The ArrayList class maintains the insertion order

• ArrayList is non-synchronized.

• Data accessing is fast compare to linked list

ArrayListDemo.java :

import java.util.ArrayList;

import java.util.Iterator;

class ArrayListDemo

{

public static void main(String args[])

{

ArrayList <String> al=new ArrayList<String>();

al.add("peter");

al.add("laxmi");

al.add("nani");

al.add("nani");

al.add("khan");

Iterator<String> i=al.iterator();

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

 }

}

Output:

peter

laxmi

nani

nani

khan

LinkedList :

• LinkedList implements the Collection interface.

• It uses a doubly linked list internally to store the elements.

• It can store the duplicate elements.

70 | P a g e

• It maintains the insertion order and is not synchronized.

• In LinkedList, the insertion and deletion is fast compare to arraylist because no shifting

is required.

LinkedListDemo.java :

import java.util.LinkedList;

import java.util.Iterator;

class LinkedListDemo

{

public static void main(String args[])

{

LinkedList <String> ll=new LinkedList<String>();

ll.add("nina");

ll.add("nina");

ll.add("rama");

ll.add("krishna");

Iterator i=ll.iterator();

while(i.hasNext())

{

System.out.println(i.next());

}

}

}

Output :

javac LinkedListDemo.java

java LinkedListDemo

nina

nina

rama

krishna

ArrayList and LinkedList both implements List interface and maintains insertion order. Both are

non synchronized classes.

However, there are many differences between ArrayList and LinkedList classes that are given

below.

ArrayList LinkedList

1) ArrayList internally uses a dynamic

array to store the elements.

LinkedList internally uses a doubly linked list to

store the elements.

2) insertion and deletion is slower than

LinkedList because all the bits are shifted

in memory.

Insertion and deletion is faster than ArrayList

because it uses a doubly linked list, so no bit shifting

is required in memory.

3) ArrayList is better accessing of data LinkedList is better for insertion and deletion of

71 | P a g e

data.

Vector :

• Vector uses a dynamic array to store the data elements. It is similar to ArrayList.

• It implements list interface

• It allows duplicate values

• It maintains insertion order

• It is synchronized

VectorDemo.java :

import java.util.Vector;

import java.util.Iterator;

class VectorDemo

{

public static void main(String args[])

{

Vector <String> v=new Vector<String>();

v.add("rama");

v.add("sita");

v.add("rama");

v.add("laxman");

Iterator i=v.iterator();

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

}

}

javac VectorDemo.java

java VectorDemo

rama

sita

rama

laxman

ArrayList and Vector both implements List interface and maintains insertion order.

However, there are many differences between ArrayList and Vector classes that are given below.

Difference between ArrayList and Vector :

ArrayList

Vector

72 | P a g e

1) ArrayList is not

synchronized.
Vector is synchronized.

2) ArrayList is fast

because it is non-

synchronized.

Vector is slow because it is synchronized, i.e., in a multithreading

environment, it holds the other threads in runnable or non-runnable

state until current thread releases the lock of the object.

Stack :

• The stack is the subclass of Vector. It implements the last-in-first-out data structure, i.e.,

Stack.

• The stack contains all of the methods of Vector class since Stack is sub class to Vector

class

• It provides its methods like push(), peek(), which defines its properties.

• It is a synchronized implementation.

StackDemo.java :

import java.util.*;

class StackDemo

{

public static void main(String args[])

{

Stack <Integer> s=new Stack <Integer>();

s.push(10);

s.push(10);

s.push(20);

s.push(30);

s.pop();

Iterator i=s.iterator();

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

}

}

Output :

javac StackDemo.java

java StackDemo

10

10

20

Set Interface :

Set Interface in Java is present in java.util package. It extends the Collection interface. It

represents the unordered set of elements which doesn't allow us to store the duplicate items. We

can store at most one null value in Set. Set is implemented by HashSet, LinkedHashSet, and

TreeSet.

73 | P a g e

Set Interface :

Set Interface in Java is present in java.util package. It extends the Collection interface. which

doesn't allow us to store the duplicate items. We can store at most one null value in Set. Set is

implemented by HashSet, LinkedHashSet, and TreeSet.

HashSet :

• HashSet class implements Set Interface. It represents the collection that uses a hash table

for storage.

• Hashing is used to store the elements in the HashSet.

• It contains unique items.

• HashSet doesn't maintain the insertion order. Here, elements are inserted on the basis of

their hashcode.

• It does not allow duplicate values

• We can insert at most one null value in HashSet

• HashSet in Java is not thread safe as it is not synchronized by default.

HashSetDemo.java :

import java.util.*;

class HashSetDemo

{

public static void main(String args[])

{

HashSet <String> hs=new HashSet <String>();

hs.add("rama");

hs.add("sita");

hs.add("rama");

hs.add("laxman");

Iterator i=hs.iterator();

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

}

}

 Output :

javac HashSetDemo.java

java HashSetDemo

rama

sita

laxman

LinkedHashSet :

LinkedHashSet class represents the hash table and LinkedList implementation of Set Interface. It

extends the HashSet class and implements Set interface.

74 | P a g e

o Java LinkedHashSet class contains unique elements only like HashSet.

o Java LinkedHashSet class is non synchronized.

o Java LinkedHashSet class maintains insertion order.

o We can add atmost one null value in linkedhash set

LinkedHashSetDemo.java :

import java.util.LinkedHashSet;

import java.util.Iterator;

class LinkedHashSetDemo

{

public static void main(String args[])

{

LinkedHashSet <String> v=new LinkedHashSet<String>();

v.add("rama");

v.add("sita");

v.add("");

v.add("rama");

v.add("laxman");

Iterator<String> i=v.iterator();

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

}

}

Output :

rama

sita

laxman

Sorted Set Interface :

• The Sorted Set interface present in java.util package extends the Set interface.

• This interface contains the methods inherited from the Set interface

• It stores all the elements in this interface to be stored in a sorted manner.

Tree Set Class :

 TreeSet class implements the Sorted Set interface that uses a tree for storage.

 Like HashSet, TreeSet also contains unique elements.

It can allow at most one null value

 However, the access and retrieval time of TreeSet is quite fast.

The elements in TreeSet stored in ascending order.

TreeSetDemo.java :

import java.util.TreeSet;

import java.util.Iterator;

class TreeSetDemo

{

public static void main(String args[])

https://www.geeksforgeeks.org/java-util-package-java/

75 | P a g e

{

TreeSet <String> t=new TreeSet<String>();

t.add("rama");

t.add("laxman");

t.add("sita");

t.add("dasaradh");

t.add("ravan");

t.add("ravan");

t.add("");

t.add("");

Iterator<String> i=t.iterator();

while(i.hasNext())

{

System.out.println(i.next());

}

}

}

javac TreeSetDemo.java

java TreeSetDemo

dasaradh

laxman

rama

ravan

sita

Map Interface in java :

A map contains values on the basis of key, i.e. key and value pair. Each key and value pair is

known as an entry. A Map contains unique keys.

A Map doesn't allow duplicate keys, but you can have duplicate values.

A Map is useful if you have to search, update or delete elements on the basis of a key.

Some of the methods in map interface

put(Object key, Object value) It is used to insert an entry in the map.

remove(Object key) It is used to delete an entry for the specified key.

clear() It is used to reset the map.

There are two interfaces for implementing Map in java: Map and SortedMap, and three classes:

HashMap, LinkedHashMap, and TreeMap. The hierarchy of Java Map is given below:

76 | P a g e

Map.Entry interface

 getKey() It is used to obtain a key.

 getValue() It is used to obtain value.

SortedMap Interface:

SortedMap is an interface in the collection framework. This interface extends the Map

interface and provides a total ordering of its elements (elements can be traversed in sorted

order of keys). The class that implements this interface is TreeMap.

The main characteristic of a SortedMap is that it orders the keys by their natural ordering.

HashMap :

• Java HashMap class implements the Map interface which allows us to store key and

value pair, where keys should be unique.

• Java HashMap contains values based on the key.

• Java HashMap contains only unique keys.

• Java HashMap may have one null key and multiple null values.

• Java HashMap is non-synchronized.

• Java HashMap maintains no order.

Some Methods of hash map

put(Object key,Object

value)

It is used to insert an entry in the map.

clear() It is used to remove all of the mappings from this map.

remove(Object key) It is used to delete an entry for the specified key.

entrySet() It is used to return a collection view of the mappings contained in this map.

LinkedHashMap :

https://www.geeksforgeeks.org/collections-in-java-2/
https://www.geeksforgeeks.org/map-interface-java-examples/
https://www.geeksforgeeks.org/map-interface-java-examples/
https://www.geeksforgeeks.org/hashmap-treemap-java/

77 | P a g e

Java LinkedHashMap class is Hashtable and Linked list implementation of the Map interface It

inherits HashMap class and implements the Map interface.

o Java LinkedHashMap contains values based on the key.

o Java LinkedHashMap contains unique elements.

o Java LinkedHashMap may have one null key and multiple null values.

o Java LinkedHashMap is non synchronized.

o Java LinkedHashMap maintains insertion order.

Java TreeMap class is a red-black tree based implementation. It provides an efficient means of

storing key-value pairs in sorted order.

The important points about Java TreeMap class are:

o Java TreeMap contains values based on the key.

o Java TreeMap contains only unique elements.

o Java TreeMap cannot have a null key but can have multiple null values.

o Java TreeMap is non synchronized.

o Java TreeMap maintains ascending order.

HashMapDemo.java

import java.util.*;

class HashMapDemo {

 public static void main(String args[])

 {

 // creating a hashmap

 HashMap<Integer, String> hm = new HashMap<Integer, String>();

 // putting elements

 hm.put(01, "rama");

 hm.put(03, "sita");

 hm.put(04, "laxman");

 hm.put(02, "daardh");

 System.out.println("Iterate over original HashMap");

 // printing hashmap

 for (Map.Entry<Integer, String> entry :

 hm.entrySet()) {

 System.out.println(entry.getKey() + " => "

 + ": " + entry.getValue());

 }

 }

}

OutPut :

Iterate over original HashMap

01 => : rama

02 => : daardh

03 => : sita

78 | P a g e

04 => : laxman

Queue Interface :

• Queue interface maintains the first-in-first-out order. It can be defined as an ordered list

that is used to hold the elements which are about to be processed.

• Queue is implemented by priority queue.

PriorityQueue :

• The PriorityQueue class implements the Queue interface.

• It holds the elements or objects which are to be processed by their priorities.

The example below explains the following basic operations of the priority queue.

• add(E element): This method inserts the specified element into this priority queue.

• peek(): This method retrieves, but does not remove, the head of this queue, or returns null

if this queue is empty.

• poll(): This method retrieves and removes the head of this queue, or returns null if this

queue is empty.

PriorityQueueDemo.java :

import java.util.PriorityQueue;

import java.util.Iterator;

class PriorityQueueDemo

{

public static void main(String args[])

{

PriorityQueue<String> pq=new PriorityQueue <String>();

pq.add("gita");

pq.add("ravi");

pq.add("sita");

pq.add("nani");

Iterator<String> i=pq.iterator();

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

}

}

Output

javac PriorityQueueDemo.java

java PriorityQueueDemo

gita

nani

sita

ravi

Deque Interface :

https://www.geeksforgeeks.org/priorityqueue-add-method-in-java/
https://www.geeksforgeeks.org/queue-peek-method-in-java/
https://www.geeksforgeeks.org/queue-poll-method-in-java/

79 | P a g e

• Deque interface extends the Queue interface.

• In Deque, we can remove and add the elements from both the side.

• Deque stands for a double-ended queue which enables us to perform the operations at

both the ends.

ArrayDeque :

• ArrayDeque class implements the Deque interface.

• It facilitates us to use the Deque. Unlike queue, we can add or delete the elements from

both the ends.

• ArrayDeque is faster than ArrayList and Stack and has no capacity restrictions.

• ArrayDeque is not thread safe it is non synchronized

• ArrayDeque is doubles its size when it gets filled.

Methods of Java Deque Interface

Method Description

add(object)

It is used to insert the specified element into this deque and return true upon success.

 remove() It is used to retrieves and removes the head of this deque.

 poll() It is used to retrieves and removes the head of this deque, or returns null if this deque is empty.

 element() It is used to retrieves, but does not remove, the head of this deque.

 peek() It is used to retrieves, but does not remove, the head of this deque, or returns null if this deque is

empty.

addFirst():This method add the first element from a Deque

addLast():This method add the last element from a Deque

removeFirst():This method removes the first element from a Deque

removeLast()This method removes the last element from a Deque

ArrayDequeDemo.java :

import java.util.ArrayDeque;

import java.util.Iterator;

class ArrayDequeDemo

{

public static void main(String args[])

{

ArrayDeque <String> ad=new ArrayDeque <String>();

ad.add("rama");

ad.add("sita");

ad.add("rama");

ad.add("laxman");

80 | P a g e

ad.addLast("peter");

ad.addFirst("peter");

Iterator i=ad.iterator();

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

}

}

Output :

javac ArrayDequeDemo.java

java ArrayDequeDemo

java ArrayDequeDemo

peter

rama

sita

rama

laxman

peter

Iterators in Collection

• ForEach

• Iterator

• Listiterator

• Enumeration

ForEach loop:

for-each loop can be used for traversing the elements of a collection. But this can only be used

if we don't want to modify the contents of a collection and we don't want any reverse access.

Syntax

The syntax of Java for-each loop consists of data_type with the variable followed by a colon (:),

then array or collection.

1. for(data_type variable : array | collection){

2. //body of for-each loop

3. }

ForEachDemo.java :

import java.util.LinkedList;

class ForEachDemo

{

public static void main(String args[])

{

LinkedList <String>ll=new LinkedList<String>();

ll.add("rama");

81 | P a g e

ll.add("sita");

ll.add("laxman");

ll.add("ravana");

for(String str:ll)

{

System.out.println(" "+str);

}

}

}

Output :

 rama

 sita

 laxman

 ravana

Enumeration: The Enumeration interface defines the methods by which you can

enumerate the elements in a collection object.

Sr.No. Method & Description

1 hasMoreElements()

it must return true while there are still more elements to extract, and false when all the

elements have been enumerated.

2 nextElement()

This returns the next object in the enumeration object.

EnumerationDemo.java :

import java.util.Enumeration;

import java.util.Vector;

class EnumerationDemo

{

public static void main(String args[])

{

Vector <String>v=new Vector<String>();

v.add("rama");

v.add("sita");

v.add("laxman");

Enumeration e=v.elements();

while(e.hasMoreElements())

{

System.out.println(e.nextElement());

}

}

}

82 | P a g e

Output:

rama

sita

laxman

Iterator interface :

Iterator interface provides the facility of iterating the elements in a forward direction only.

Methods of Iterator interface

There are only three methods in the Iterator interface. They are:

No. Method Description

1 public boolean hasNext() It returns true if the iterator has more elements otherwise it returns false.

2 public Object next() It returns the element and moves the cursor pointer to the next element.

3 public void remove() It removes the last elements returned by the iterator. It is less used.

IteratorDemo.java :

//displaying even numbers in the vector collection object

import java.util.Iterator;

import java.util.Vector;

class IteratorDemo

{

public static void main(String args[])

{

Vector <Integer>v=new Vector<Integer>();

v.add(10);

v.add(12);

v.add(13);

Iterator i=v.iterator();

while(i.hasNext())

{

Integer n=(Integer)i.next();

if(n%2==0)

System.out.println(n);

else

i.remove();

}

}

}

Output:

10

12

ListIterator :It is a iterator which is used to traverse all types of lists such

as ArrayList, Vector, LinkedList, Stack etc.

ListIterator extends iterator interface

https://www.google.com/url?client=internal-element-cse&cx=009682134359037907028:tj6eafkv_be&q=https://www.geeksforgeeks.org/arraylist-in-java/&sa=U&ved=2ahUKEwio69n8qf_sAhVc6XMBHXWMCEQQFjAAegQIARAC&usg=AOvVaw0uNPLb8FKgi1eG5kZmt5Rk
https://www.google.com/url?client=internal-element-cse&cx=009682134359037907028:tj6eafkv_be&q=https://www.geeksforgeeks.org/java-util-vector-class-java/&sa=U&ved=2ahUKEwjGmpCIqv_sAhVk4HMBHd9oDrAQFjAAegQIBhAB&usg=AOvVaw1o1za4FVvi46n-HuTu8hEU
https://www.google.com/url?client=internal-element-cse&cx=009682134359037907028:tj6eafkv_be&q=https://www.geeksforgeeks.org/linked-list-in-java/&sa=U&ved=2ahUKEwj1y8WPqv_sAhV97HMBHc8kATIQFjAAegQIAxAC&usg=AOvVaw1VPmoI-OkQ09bKgvwmtIM_
https://www.google.com/url?client=internal-element-cse&cx=009682134359037907028:tj6eafkv_be&q=https://www.geeksforgeeks.org/stack-class-in-java/&sa=U&ved=2ahUKEwj-87iXqv_sAhVr8XMBHQE6Bo0QFjACegQIBxAC&usg=AOvVaw0D-K9c0-1Dq9TGmdv5QkDf

83 | P a g e

ListIterator is a bi-directional iterator. For this functionality, it has two kinds of

methods:

1. Forward direction iteration :

• hasNext(): This method returns true when the list has more elements to traverse while

traversing in the forward direction

• next(): This method returns the next element of the list and advances the position of the

cursor.

2. Backward direction iteration :

• hasPrevious(): This method returns true when the list has more elements to traverse while

traversing in the reverse direction

• previous(): This method returns the previous element of the list and shifts the cursor one

position backwards.

ListIteratorDemo.java :

import java.util.ListIterator;

import java.util.Vector;

class ListIteratorDemo

{

public static void main(String args[])

{

Vector <Integer>v=new Vector<Integer>();

v.add(10);

v.add(12);

v.add(13);

v.add(20);

ListIterator l=v.listIterator();

System.out.println("accessing elements in forward direction");

 while(l.hasNext())

 {

 System.out.println(l.next());

 }

System.out.println("accessing elements in backward direction");

 while(l.hasPrevious())

 {

 System.out.println(l.previous());

 }

}

}

Output :

accessing elements in forward direction

10

12

13

20

84 | P a g e

accessing elements in backward direction

20

13

12

10

Comparable in java :

Java Comparable interface is used to order the objects of the user-defined class. This interface is

found in java.lang package and contains only one method named compareTo(Object). It provides

a single sorting sequence only, i.e., you can sort the elements on the basis of single data member

only. For example, it may be rollno, name, age or anything else.

public int compareTo(Object obj): It is used to compare the current object with the specified

object. It returns

o positive integer, if the current object is greater than the specified object.

o negative integer, if the current object is less than the specified object.

o zero, if the current object is equal to the specified object.

Collections class :

Collections class provides static methods for sorting the elements of collections. If collection

elements are of Set or Map, we can use TreeSet or TreeMap. However, we cannot sort the

elements of List. Collections class provides methods for sorting the elements of List type

elements.

Method of Collections class for sorting List elements :

public void sort(List list): It is used to sort the elements of List. List elements must be of the

Comparable type.

Student.java :

import java.util.Collections;

import java.util.ArrayList;

import java.lang.Comparable;

class Student implements Comparable<Student>

{

int age;

String name;

int marks;

Student(String name,int age,int marks)

{

this.age=age;

this.name=name;

this.marks=marks;

}

public int compareTo(Student s)

{

if(this.age>s.age)return 1;//code for age, sorting integers

85 | P a g e

else if(this.age<s.age)return -1;

return 0;

//return this.name.compareTo(s.name);// code for names sorting string objects

}

public static void main(String args[])

{

ArrayList<Student>al=new ArrayList<Student>();

Student s1=new Student("dhoni",37,100);

Student s2=new Student("pant",23,70);

Student s3=new Student("jadeja",31,80);

Student s4=new Student("bumrah",27,0);

al.add(s1);

al.add(s2);

al.add(s3);

al.add(s4);

Collections.sort(al);

for(Student st:al)

{

System.out.println(st.age+","+st.name);

}

}

}

javac Student.java

Java Student

23,pant

27,bumrah

31,jadeja

37,dhoni

Comparator in java :

Java Comparator interface is used to order the objects of a user-defined class.

This interface is found in java.util package and contains 2 methods compare(Object obj1,Object

obj2) and equals(Object element).

It provides multiple sorting sequences, i.e., you can sort the elements on the basis of any data

member of a class, for example, rollno, name, age or anything else.

Methods of Java Comparator Interface :

Method Description

public int compare(Object obj1, Object

obj2)
It compares the first object with the second object.

public boolean equals(Object obj)
It is used to compare the current object with the

specified object.

Collections class :

86 | P a g e

Collections class provides static methods for sorting the elements of a collection. If

collection elements are of Set or Map, we can use TreeSet or TreeMap. However, we cannot

sort the elements of List. Collections class provides methods for sorting the elements of List

type elements also.

Method of Collections class for sorting List elements

public void sort(List list, Comparator c): is used to sort the elements of List by the given

Comparator.

ComparatorMain.java :

import java.util.Collections;

import java.util.ArrayList;

import java.util.Comparator;

class Student

{

int age;

String name;

int marks;

 Student(int age,String name,int marks)

 {

 this.age=age;

 this.name=name;

 this.marks=marks;

 }

}

class AgeComparator implements Comparator

{

 public int compare(Object o1,Object o2)

 {

 Student s1=(Student)o1;

 Student s2=(Student)o2;

 if(s1.age>s2.age) return 1;

 else if(s1.age<s2.age) return -1;

 else return 0;

 }

}

class NameComparator implements Comparator

{

 public int compare(Object o1,Object o2)

 {

 Student s1=(Student)o1;

 Student s2=(Student)o2;

 return s1.name.compareTo(s2.name);

87 | P a g e

 }

}

public class ComparatorMain

{

public static void main(String args[])

{

ArrayList <Student>al=new ArrayList<Student>();

al.add(new Student(21,"mahesh",78));

al.add(new Student(31,"giresh",88));

al.add(new Student(29,"saho",68));

al.add(new Student(21,"pawan",100));

al.add(new Student(32,"hemesh",98));

Collections.sort(al,new AgeComparator());

System.out.println("sort by age");

for(Student s:al)

{

System.out.println(s.age+","+s.name+","+s.marks);

}

System.out.println("Sort by name");

Collections.sort(al,new NameComparator());

for(Student s:al)

{

System.out.println(s.age+","+s.name+","+s.marks);

}

}

}

Difference between Comparable and Comparator :

Comparable and Comparator both are interfaces and can be used to sort collection elements.

However, there are many differences between Comparable and Comparator interfaces that are

given below.

Comparable Comparator

1) Comparable provides a single sorting

sequence. In other words, we can sort the

collection on the basis of a single element of a

class such as id, name, and price.

The Comparator provides multiple sorting

sequences. In other words, we can sort the

collection on the basis of multiple elements of a

class such as id, name, and price etc.

2) Comparable affects the original class, i.e.,

the actual class is modified.

Comparator doesn't affect the original class,

i.e., the actual class is not modified.

3) Comparable provides compareTo() method

to sort elements.

Comparator provides compare() method to sort

elements.

88 | P a g e

4) Comparable is present in java.lang package.
A Comparator is present in the java.util

package.

5) We can sort the list elements of Comparable

type by Collections.sort(List) method.

We can sort the list elements of Comparator type

by Collections.sort(List, Comparator) method.

List the examples for Set, List in java. Can we add set to list in Java?

Yes we can add set to list in java

The addAll() method of java.util.Collections class is used to add all of the specified elements to

the specified collection. Elements to be added may be specified individually or as an array.

Tester.java :

import java.util.*;

public class Tester{

 public static void main(String[] args){

 ArrayList<String> al=new ArrayList<String>();

 al.add("peter");

 al.add("prakash");

 HashSet<String> hs=new HashSet<String>();

 hs.add("karthik");

 hs.add("yugandhar");

 al.addAll(hs);

 Iterator itr=al.iterator();

 while(itr.hasNext())

 System.out.println(itr.next());

}

}

Output

peter

prakash

yugandhar

karthik

In Java 1.4, both the String and the StringBuffer classes implements java.lang.CharSequence

interface, which is a standard interface for querying the length of and extracting characters and

subsequences from a readable sequence of characters. It can be explained with the help of

example given below:

class A

{

public void dumpSeq(CharSequence cs)

{

System.out.println("length = " + cs.length());

System.out.println("first char = " + cs.charAt(0));

System.out.println("string = " + cs);

}

}

89 | P a g e

class program {

public static void main(String args[])

{

String s = "test";

A a=new A();

a.dumpSeq(s);

}

}

Output :

length = 4

first char = t

string = test

Diff between for and for each :

Foreach Syntax :

The syntax of Java for-each loop consists of data_type with the variable followed by a colon (:),

then array or collection.

for(data_type variable : array | collection){

//body of for-each loop }

Forloop Syntax:

for(initialization; condition; increment/decrement){

//statement or code to be executed

}

What Scanner class and write a program to read various data kinds of data?

Scanner Class in java :

Scanner class in Java is found in the java.util package. Java provides various ways to read input

from the keyboard, the java.util.Scanner class is one of them.

How to get Java Scanner :

To get the instance of Java Scanner which reads input from the user, we need to pass the input

stream (System.in) in the constructor of Scanner class. For Example:

 Scanner in = new Scanner(System.in);

1)double nextDouble():It scans the next token of the input as a double.

2)float nextFloat():It scans the next token of the input as a float.

2)int nextInt():It scans the next token of the input as an Int.

90 | P a g e

3)String nextLine():It is used to get the input string that was skipped of the Scanner

object.

4)long nextLong():It scans the next token of the input as a long.

5)short nextShort():It scans the next token of the input as a short.

import java.util.*;

public class ScannerExample {

public static void main(String args[]){

 Scanner in = new Scanner(System.in);

 System.out.print("Enter your name: ");

 String name = in.nextLine();

 System.out.println("Name is: " + name);

 in.close();

 }

}

Output:

Enter your name:vicky

Name is: vicky

Discuss java.util.* package :

Answer: Explain about Scanner class, StringTokenizer and few Collection Hierarchy Classes

and interfaces

Illustrate Java Program to Add Characters to a String.

Adding Character to String can be done in following ways

1.Using + operator

i.At the end

ii. At the beginning

2.Using substring() method

// Java Program to Add Characters to a String

// At the End

// Main class

public class GFG {

 // Main driver method

 public static void main(String args[])

 {

 // Input character and string

 char a = 's';

 String str = "ComputerScience";

 // Inserting at the end

 String str2 = str + a;

91 | P a g e

 // Print and display the above string

 System.out.println(str2);

 }

}

Output :

ComputerSciences

UNIT-4

IO Streams: IO Streams is a part of java library.IO Streams deals with all predefined classes

present in java.io package. The classes present in java.io package together are called IO Streams.

Stream:

Stream is a flow of data or sequence of data that carries from location to another location.

A stream is a logical connection between java program and a file

There are two kinds of Streams −

• InPutStream − The InputStream is used to read data from a source.

• OutPutStream − The OutputStream is used for writing data to a destination.

The different input and output stream classes in java

92 | P a g e

Different Input Stream classes

InputStream : This class is used to read the data. It is the super class for all the InputStream

classes.

FileInputStream:This class is used to read the data from the file

ByteArrayInputStream:This class is used to read the data from the ByteArray

FilterInputStream: This class implements the InputStream. It contains different sub classes

as BufferedInputStream, DataInputStream

DataInputStream:This class is used to read primitive data

BufferInputStream:This class is used to read data from the Buffer.

Different Output Stream classes

OutputStream: This class is used to write the data. It is the super class for all the InputStream

classes.

File OutputStream:This class is used to write the data from the file

ByteArrayOutputStream:This class is used to write the data from the ByteArray

FilterOutputStream: This class implements the InputStream. It contains different sub classes

as BufferedOutputStream, DataOutputStream

https://www.javatpoint.com/java-bufferedinputstream-class
https://www.javatpoint.com/java-datainputstream-class
https://www.javatpoint.com/java-bufferedinputstream-class
https://www.javatpoint.com/java-datainputstream-class

93 | P a g e

DataOutputStream:This class is used to read primitive data

BufferOutputStream:This class is used to read data from the Buffer.

Two forms of data based on type of data in the Streams :

1.Character Streams: The Stream that allows us to send data in the Character format is

Character Stream.

Character streams: It carries the data in the form of character stream

It can read and write 2 bytes i.e 16bits of data. In other words, it processes data character by

character.

Character streams are available from 1.1

2.Byte Streams: The Stream that allows us to send data in the byte format is byte stream.

It can read and write 1 byte i.e 8 bit of data. In other words, it processes data byte by byte.

In other words, we can say that ByteStream classes read/write the data of 8-bits. We can store

video, audio, characters, etc., by using ByteStream classes.

 Byte stream are available in java 1.0

Byte Stream: It carries the data in the form of byte stream

ByteStream:Data is in the form of Bytes .

 Api of ByteStreams ends with Stream

Some of the examples of bytestreams

FileInputStream:Reads the data of file in the form of Streams

FileOutputStream: Write’s the data of file in the form of Streams

BufferedInputStream:Reads the data in the form of Bytes and stores the data in Buffer

BufferedOutputStream: Writes the data in the form of Bytes and stores the data in Buffer

Elaborate read and write operations of File in JAVA?

CopyFileusingByteStreams.java

import java.io.*;

class CopyFileusingByteStreams {

 public static void main(String args[]) {

 try {

 FileInputStream in = new FileInputStream("\\E:input.txt");

94 | P a g e

 FileOutputStream out = new FileOutputStream("\\E:output.txt");

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

 out.close();

 in.close();

 System.out.println("file copy successfull");

 }

catch(Exception e){

 System.out.println(e);}

 }

 }

javac CopyFileusingByteStreams.java

java CopyFileusingByteStreams

file copy successfull

Character Sreams: Data is in the form of Characters

API of Character Stream ends with Readers and Writer

Some of the examples of Character streams

FileReader:Reads the data from a file

FileWriter:Writes the data from the file

BufferedReader:reads the data and stores in the buffer

BufferedWriter:write the data in to a buffer

CopyFileusingCharacterStreams.java

import java.io.*;

class CopyFileusingCharacterStreams {

 public static void main(String args[]) {

 try {

 FileReader in = new FileReader("\\E:input.txt");

 FileWriter out = new FileWriter("\\E:output.txt");

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

 out.close();

 in.close();

 System.out.println("file copy successfull");

95 | P a g e

 }

catch(Exception e){

 System.out.println(e);}

 }

 }

javac CopyFileusingCharacterStreams.java

java CopyFileusingCharacterStreams

file copy successfull

Byte Streams Character Streams

The Stream that allows us to send data in the

byte format is byte stream.

The Stream that allows us to send data in the

chracter format is chracter stream.

It can read and write 1 byte i.e 8 bit of data. In

other words, it processes data byte by byte.

It can read and write 2 byte i.e 16 bit of data.

In other words, it processes data chracter by

character.

Byte stream are available in java 1.0

Character stream are available in java 1.1

We can store video, audio, characters, etc., by

using ByteStream classes.

We can store text data by

using CharacterStream classes.

FileInputStream,FileOutputStreamare

examples

FileReader,FileWriter classes are examples

Exception:An exception is an unexpected event that occurred during the execution of a program,

and disrupts the normal flow of instructions.

Exception Handling

Exception handling is a technique to convert system generated errors in to user friendly

messages.

There are two types of exceptions in java

96 | P a g e

1.checked exceptions:

These exceptions are checked at compile time,

Compile time errors occurs when the java programmer not followed syntaxes

Examples: IOException, SQLException

2. unchecked exceptions:

These exceptions checked at run time

Run time error occurs when user enters invalid input

Run time errors are called exceptions

Examples:

• ArithmeticException

• ArrayIndexOutOfBoundsException

• NullPointerException

• NumberFormatException

• StringIndexOutOfBoundsException

• FileNotFoundException

Checked Exception Unchecked Exception

Checked exceptions occur at compile time. Unchecked exceptions occur at runtime.

The compiler checks a checked exception.
The compiler does not check these types of

exceptions.

These types of exceptions can be handled at the

time of compilation.

These types of exceptions cannot be a catch or

handle at the time of compilation these are run

time exceptions

They are the sub-class of the exception class.
These are the subclasses of RuntimeException

class

Examples of Checked exceptions:

Examples of Unchecked Exceptions:

97 | P a g e

• File Not Found Exception

• No Such Field Exception

• Interrupted Exception

• No Such Method Exception

• Class Not Found Exception

• No Such Element Exception

• Undeclared Throwable Exception

• Empty Stack Exception

• Arithmetic Exception

• Null Pointer Exception

• Array Index Out of Bounds Exception

• Security Exception

ExceptionHandling Heirarchy Chart

Throwable class

The java.lang.Throwable class is the root class of Java Exception hierarchy which is inherited by

two subclasses: Exception and Error. A hierarchy of Java Exception classes are given below:

Scanner Class in java

98 | P a g e

Scanner class in Java is found in the java.util package. Java provides various ways to read input from the
keyboard, the java.util.Scanner class is one of them.

How to get Java Scanner

To get the instance of Java Scanner which reads input from the user, we need to pass the input

stream (System.in) in the constructor of Scanner class. For Example:

 Scanner in = new Scanner(System.in);

1)double nextDouble():It scans the next token of the input as a double.

2)float nextFloat():It scans the next token of the input as a float.

2)int nextInt():It scans the next token of the input as an Int.

3)String nextLine():It is used to get the input string that was skipped of the Scanner

object.

4)long nextLong():It scans the next token of the input as a long.

5)short nextShort():It scans the next token of the input as a short.

import java.util.*;

public class ScannerExample {

public static void main(String args[]){

 Scanner in = new Scanner(System.in);

 System.out.print("Enter your name: ");

 String name = in.nextLine();

 System.out.println("Name is: " + name);

 in.close();

 }

}

output

Enter your name:vicky

99 | P a g e

Name is: vicky

(B)Contrast Error and Exception. Check with JVM error and ArrayIndexOutOfBounds

Exception.

Difference between Error and Exception

Sr. No. Error Exception

1 Error is Classified as an

unchecked type

Exception is Classified as checked and

unchecked

2 It belongs to

java.lang.Error

It belongs to java.lang.Exception

3 Error cannot be handled It

is irrecoverable

Exception can be handled gy using

exception handling concepts.It is

recoverable

4 It occurs at runtime It can occur at run time and compile

time

5 OutOfMemoryError

,IOError

NullPointerException , SqlException

Check with JVM Error and Arrayindexoutofboundexception

class ArrayIndexOutOfBound_Demo {

100 | P a g e

public static void main(String args[])

 {

 try {

 int a[] = new int[5];

 a[6] = 9; // accessing 7th element in an array of

 // size 5

 }

 catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("Array Index is Out Of Bounds");

 }

 catch (Error e) {

 System.out.println("JVM Error");

 }

 }

}

There are two types of exceptions in java related to libraries

1.built in exception/pre-defined exception

2. user defined exception/custom defined exception

Built-in exceptions are pre-defined exceptions which are available in Java libraries

Examples

• ArithmeticException

• ArrayIndexOutOfBoundsException

• NullPointerException

• NumberFormatException

• StringIndexOutOfBoundsException

User defined(Custom exception)

 exception are these are defined by the programmer

Example

101 | P a g e

Invalid salary of employee

Invalid age of human beign

To display user friendly messages instead of system generated messages

Exception Handlers

We need the following five keywords

1.try

2.catch

3.finally

4.throw

5.throws

There are 5 keywords which are used in handling exceptions in Java.

Keyword Description

Try The "try" keyword is used to specify a block where we should place exception

code. The try block must be followed by either catch or finally. It means, we can't

use try block alone.

Catch The "catch" block is used to handle the exception. It must be preceded by try

block which means we can't use catch block alone. It can be followed by finally

block later.

finally The "finally" block is used to close the files etc

Throw The "throw" keyword is used to throw an custom defined exception.

throws The "throws" keyword is used to declare exceptions. It doesn't throw an exception.

It specifies that there may occur an exception in the method. It is always used with

method signature.

Built in exceptions examples

Arithmetic exception :It is thrown when an exceptional condition has occurred in an arithmetic

operation

// Java program to demonstrate

// ArithmeticException

102 | P a g e

class ArithmeticException_Demo {

public static void main(String args[])

 {

 try {

 int a = 30, b = 0;

 int c = a / b; // cannot divide by zero

 System.out.println("Result = " + c);

 }

 catch (ArithmeticException e) {

 System.out.println("Can't divide a number by 0");

 }

 }

}

Output

Can't divide a number by 0

ArrayIndexOutOfBoundsException :It is thrown to indicate that an array has been accessed with

an illegal index. The index is either negative or greater than or equal to the size of the array.

// Java program to demonstrate

// ArrayIndexOutOfBoundException

class ArrayIndexOutOfBound_Demo {

public static void main(String args[])

 {

 try {

 int a[] = new int[5];

 a[6] = 9; // accessing 7th element in an array of

 // size 5

 }

 catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("Array Index is Out Of Bounds");

 }

 }

}

Output

Array Index is Out Of Bounds

FileNotFoundException : This Exception is raised when a file is not accessible or does not open.

// Java program to demonstrate

// FileNotFoundException

import java.io.*;

class File_notFound_Demo {

public static void main(String args[])

 {

103 | P a g e

 try {

 FileReader fr = new FileReader(“E:\\cse.txt”);

 }

 catch (FileNotFoundException e) {

 System.out.println("File does not exist");

 }

 }

}

Output

File does not exist

NullPointerException :This exception is raised when referring to the members of a null object.

Null represents nothing

// Java program to demonstrate NullPointerException

class NullPointer_Demo {

public static void main(String args[])

 {

 try {

 String a = null; // null value

 System.out.println(a.charAt(0));

 }

 catch (NullPointerException e) {

 System.out.println("NullPointerException..");

 }

 }

}

NullPointerException..

NumberFormatException :This exception is raised when a method could not convert a string into

a numeric format.

// Java program to demonstrate

// NumberFormatException

class NumberFormat_Demo {

public static void main(String args[])

 {

 try {

 // "akki" is not a number

 int num = Integer.parseInt("akki");

 System.out.println(num);

 }

 catch (NumberFormatException e) {

 System.out.println("Number format exception");

 }

104 | P a g e

 }

}

StringIndexOutOfBoundsException : It is thrown by String class methods to indicate that an

index is less than the size of the string.

class StringIndexOutOfBound_Demo {

public static void main(String args[])

 {

 try{

 String a = "This is like chipping "; // length is 22

 char c = a.charAt(24); // accessing 25th element

 System.out.println(c);

 }

 catch(StringIndexOutOfBoundsException e) {

 System.out.println("StringIndexOutOfBoundsException");

 }

 }

}

Output

StringIndexOutOfBoundsException

Java Multi-catch block

A try block can be followed by one or more catch blocks. Each catch block must contain a

different exception handler. So, if you have to perform different tasks at the occurrence of

different exceptions, use java multi-catch block.

MultipleCatchBlock1.java

 public class MultipleCatchBlock1 {

 public static void main(String[] args) {

 try{

 int a[]=new int[5];

 a[5]=30/0;

 }

 catch(ArithmeticException e)

105 | P a g e

 {

 System.out.println("Arithmetic Exception occurs");

 }

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println("ArrayIndexOutOfBounds Exception occurs");

 }

 catch(Exception e)

 {

 System.out.println("Parent Exception occurs");

 }

finally{}

 System.out.println("rest of the code");

 }

 }

Explain about finally exception handler with java code.

Finally block

Th finally block in java is used to put important codes such as clean up code e.g. closing the file

or closing the connection. The finally block executes whether exception rise or not and whether

exception handled or not. A finally contains all the crucial statements regardless of the exception

occurs or not.

 // Java program to demonstrate

// finally block in java When
// exception does not rise

import java.io.*;

class GFG {
 public static void main(String[] args)
 {
 try {

106 | P a g e

 System.out.println("inside try block");

 // Not throw any exception
 System.out.println(34 / 2);
 }

 // Not execute in this case
 catch (ArithmeticException e) {

 System.out.println("Arithmetic Exception");

 }
 // Always execute
 finally {

 System.out.println(
 "finally : i execute always.");

 }
 }
}

Throw Keyword

The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by throw keyword. The throw

keyword is mainly used to throw custom exception.

Syntax:

throw objectName;

or

throw new ClassName()

ValidAge.java

class ValidAge

{

public static void main(String args[])

{

int voterAge=17;

if(voterAge<18)

throw new ArithmeticException("Not Valid Age");

else

System.out.println("valid voter age");

107 | P a g e

}

}

javac ValidAge.java

java ValidAge

Exception in thread "main" java.lang.ArithmeticException: Not Valid Age

 at ValidAge.main(ValidAge.java:11)

Throws Keyword: The Java throws keyword is used to declare an exception. It gives an

information to the programmer that there may occur an exception

Throws keyword is used along with the method signature

Syntax:

Returntype methodname(arg1,arg2,arg3,arg4…..) throws Exception1,Exception2,,,,,,,,,,

{

}

Example

void fileRead()throws FileNotFoundException,IOException

{

}

ThrowsExample.java

import java.io.*;

class ThrowsExample

{

public static void main(String args[])throws FileNotFoundException,IOException

{

FileReader fr=new FileReader("E:\\cse.txt");

FileWriter fw=new FileWriter("E:\\ece.txt");

int ch;

108 | P a g e

while((ch=fr.read())!=-1)

{

fw.write((char)ch);

}

fw.close();

fr.close();

System.out.println("FileReading and Writing Successfull");

}

}

Output

javac ThrowsExample.java

java ThrowsExample

FileReading and Writing Successfull

Difference between throw and throws in Java

 Throw
 Throws

1
Java throw keyword is used to

explicitly throw an exception.
Java throws keyword is used to declare an exception.

2
Throw is followed by an

instance.
Throws is followed by class.

3
Throw is used within the

method.
Throws is used with the method signature.

4

You cannot throw multiple

exceptions.

You can declare multiple exceptions e.g.

public void method()throws IOException,SQLException.

5
At a time we can throw one

object at a time

At a time we can declare any no of exceptions using

Throws keyword

6

throw objectname;

(or)

throw new Classname()

1.

2. return_type method_name() throws exception_class_name{

3. //method code

4. }

109 | P a g e

User defined exceptions

If you are creating your own Exception that is known as custom exception or user-defined

exception. Java custom exceptions are used to customize the exception according to user need.

By the help of custom exception, you can have your own exception and message.

Sometimes, the built-in exceptions in Java are not able to describe a certain situation. In such

cases, user can also create exceptions which are called ‘user-defined Exceptions’.

How to create user defined exception:

• Step 1:The user should create an exception class as a subclass of Exception class. Since

all the exceptions are subclasses of Exception class, the user should also make his class a

subclass of it. This is done as:

classMyException extends Exception

• Step 2:We can write a default constructor in his own exception class.

MyException(){}

We can also create a parameterized constructor with a string as a parameter.

We can use this to store exception details.

 Step 3:We can call super class(Exception) constructor from this and send the string there.

MyException(String str)

{

super(str);

}

Step 4:To raise exception of user-defined type, we need to create an object to this exception class

and throw it using throw clause, as:

MyException me = new MyException(“Exception details”);

110 | P a g e

throw me;

User defined exception example

VoterAgeLessException.java

import java.util.Scanner;

class VoterAgeLessException extends Exception

{

VoterAgeLessException(String str)

{

super(str);

}

public static void main(String args[])throws VoterAgeLessException

{

Scanner sc=new Scanner(System.in);

System.out.println("enter voter age");

try{

int age=sc.nextInt();

 if(age<18)

 {

 throw new VoterAgeLessException("voter age less");

 }

 else

 System.out.println("valid age");

}

catch(ArithmeticException a)

{

System.out.println(a);

}

finally

{

}

}

}

Output-1

javac VoterAgeLessException.java

java VoterAgeLessException

enter voter age

12

Exception in thread "main" VoterAgeLessException: voter age less

 at VoterAgeLessException.main(VoterAgeLessException.java:17) Output-2

Output2

javac VoterAgeLessException.java

111 | P a g e

java VoterAgeLessException

enter voter age

18

valid age

ExceptionPropagation:

when an exception happens, Propagation is a process in which the exception is being dropped

from to the top to the bottom of the stack. If not caught once, the exception again drops down to

the previous method and so on until it gets caught or until it reach the very bottom of the call

stack. This is called exception propagation and this happens in case of Unchecked Exceptions.

How to propagate an unchecked exception

ExceptionPropagation.java

class ExceptionPropagation

{

 public void method1()

 {

 int a=30/0;

 System.out.println(a);

 }

 public void method2()

 {

 method1();

 }

 public void method3()

 {

 try{

 method2();

 }

 catch(ArithmeticException ae)

 {

 System.out.println("Arithmetic Exception occured");

 }

 }

public static void main(String args[])

{

ExceptionPropagation ep=new ExceptionPropagation();

ep.method3();

}

112 | P a g e

}

What is the difference between ClassNotFoundException and NoClassDefFoundError with
suitable example.
ClassNotFoundException occurs when you try to load a class at runtime using Class.forName() methods
and requested classes are not found in classpath. Most of the time this exception will occur when you
try to run application without updating classpath with JAR files.
// Java program to illustrate
// ClassNotFoundException
public class Example {

 public static void main(String args[]) {

 try
 {
 Class.forName("GeeksForGeeks");
 }
 catch (ClassNotFoundException ex)
 {
 System.out.println(“Class not found exception”);
 }
 }
}

Output

java.lang.ClassNotFoundException: GeeksForGeeks

NoClassDefFoundError occurs when class was present during compile time and program was compiled
and linked successfully but class was not present during runtime.
// Java program to illustrate
// NoClassDefFoundError
class GeeksForGeeks
{
 void greeting()
 {
 System.out.println("hello!");
 }
}

class G4G {
 public static void main(String args[])
 {
 GeeksForGeeks geeks = new geeksForGeeks();
 geeks.greeting();
 }
}

Above program will be successfully compiled and generate two classes GeeksForGeeks.class

and G4G.class .

113 | P a g e

Now remove GeeksForGeeks.class file and run G4G.class.

At Java runtime NoClassDefFoundError will be thrown.

Serialization and Deserialization in java
Serialization is a mechanism of converting the state of an object into a byte stream.

The byte stream created is platform independent. So, the object serialized on one platform can be

deserialized on a different platform.

To make a Java object serializable we implement the java.io.Serializable interface.

The ObjectOutputStream class contains writeObject() method for serializing an Object.

public final void writeObject(Object obj)

 throws IOException

Advantages of Serialization
1. To save/persist state of an object permenantly

Only the objects of those classes can be serialized which are implementing java.io.Serializable interface.
Serializable is a marker interface (has no data member and method). It is used to “mark” java classes so
that objects of these classes may get certain capability.

SerializableEx.java
import java.io.*;
class Student implements Serializable
{
private String sname;
 private int sno;
public void setName(String sname)
{
this.sname=sname;
}
public void setNo(int sno)
{
this.sno=sno;
}
public String getName()
{
return this.sname;
}
public int getSno()
{
return this.sno;
}

}
class SerializableEx

114 | P a g e

{
public static void main(String args[])
{
Student s=new Student();
s.setName("peter");
s.setNo(100);
try{
FileOutputStream file=new FileOutputStream(\\E:Student.ser, true);
ObjectOutputStream out=new ObjectOutputStream(file);
out.writeObject(s);
out.close();
file.close();
System.out.println("object serialized in student.ser");
}
catch(IOException io)
{
System.out.println(io);
}

}

}

javac SerializableEx.java
java SerializableEx
object serialized in student.ser

Deserialization in java
Deserialization is the reverse process where the byte stream is used to recreate the actual Java object in
memory. This mechanism is used to persist the object.

The byte stream created is platform independent. So, the object serialized on one platform can be

deserialized on a different platform.

The ObjectInputStream class contains readObject() method for deserializing an object.

public final Object readObject()

 throws IOException,

 ClassNotFoundException

DeserializationEx.java

import java.io.*;

class DeserializableEx

115 | P a g e

{

public static void main(String args[])

{

Student s=null;

try{

FileInputStream file=new FileInputStream("\\E:Student.ser");

ObjectInputStream in=new ObjectInputStream(file);

s=(Student)in.readObject();

System.out.println("Student name=>"+s.getName());

System.out.println("Student no=>"+s.getSno());

in.close();

file.close();

}

catch(IOException io)

{

}

catch(ClassNotFoundException io)

{

}

}

}

javac DeserializationEx.java

java DeserializationEx

Student name=>peter

Student no=>100

Java Nested try block

In Java, using a try block inside another try block is permitted. It is called as nested try block.

Every statement that we enter a statement in try block, context of that exception is pushed onto

the stack.

For example, the inner try block can be used to handle ArrayIndexOutOfBoundsException

while the outer try block can handle the ArithemeticException (division by zero).

Why use nested try block

Sometimes a situation may arise where a part of a block may cause one error and the entire block

itself may cause another error. In such cases, exception handlers have to be nested.

NestedTryBlock.java

116 | P a g e

 public class NestedTryBlock {

 public static void main(String args[])

 {

 // outer (main) try block

 try {

 // inner try block 2

 try {

 int arr[] = { 1, 2, 3, 4 };

 //printing the array element out of its bounds

 System.out.println(arr[10]);

 }

 // to handles ArithmeticException

 catch (ArithmeticException e) {

 System.out.println("Arithmetic exception");

 System.out.println(" inner try block 2");

 }

 }

 // to handle ArrayIndexOutOfBoundsException

 catch (ArrayIndexOutOfBoundsException e4) {

 System.out.print(e4);

 System.out.println(" outer (main) try block");

 }

 }

 }

Output java.lang.ArrayIndexOutOfBoundsException: 10 outer (main) try block

UNIT-5

Multi threading Introduction :

Multi taking:

 Executing several tasks simultaneously is called multi-tasking

Two types of multi-tasking:

117 | P a g e

• Process based multi-tasking: Executing several tasks simultaneously where each task is

separate independent process known as Multiprocessing.

Example: typing a java program in editor, listening songs, downloading songs all these

tasks done simultaneously each of this tasks having separate process

• Thread based multi-tasking: Executing several tasks simultaneously where each task is

separate independent thread of a same program known as Multithreading. Thread based

multi- tasking is related to programming

• Threads share the same address space.

• A thread is lightweight because they use less resource

• Cost of communication between the thread is low.

Threads are light weight because :

Normally a user thread, that can share same address space and resources with other threads,

reducing context switching time during execution.

Difference between thread and process :

Thread Process

Thread is a part of process or a part of a

program

The Program under execution is process

Threads are light weight process because they

uses less resources to communicate

process is heavy weight process because they

uses more resources to communicate

Multiple threads shares the same address space

of process

Process has its own address spaces

Context switching of thread is low cost Context switching of process is costly

Inter thread communication is cost is low Inter process communication is costly

Thread based multi-tasking is multi-threading Process based multi-tasking is multi processing

Explain thread life cycle?

Thread Life Cycle:

A thread in Java at any point of time exists in any one of the following states. A thread lies only

in one of the shown states at any instant:

Different States of Thread :

1. New

2. runnable

3. running

4. Blocked(non-runnable)

5. Terminate

1) New :

The thread is in new state if you create an instance of Thread class but before the invocation of

start() method. When you call a start method it implicitly call run() method.

2) Runnable :

The thread is in runnable state after invocation of start() method, but the thread scheduler has not

selected it to be the running thread.

3) Running :

The thread is in running state if the thread scheduler has selected it.

4) Non-Runnable (Blocked) :

http://www.geeksforgeeks.org/multithreading-in-java/

118 | P a g e

This is the state when the thread is still alive, but is currently not eligible to run.

5) Terminated :

A thread is in terminated or dead state when its run() method exits.

 Java provides a thread class that has various method calls in order to manage the behaviour of

threads.

Thread class methods:

start():Causes this thread to begin execution;

run():When the run() method calls, the code specified in the run() method is executed. You

can call the run() method multiple times.

sleep(long millis):Causes the currently executing thread to suspended for the specified number

of milliseconds. Sleep method is a static method so it can be called by static method

setPriority(int newPriority): this method is used to set priority andChanges the current

priority of the thread

1 to 10

1 MINIMUM_PROIRITY

10 MAXIMUM_PRORITY

5 NORMAL_PRIORITY

setName(String name): Changes the name of this thread to be equal to the argument name.

currentThread(): Returns a reference to the currently executing thread object

getId(): returns the id of a Thread

getName(): returns this thread’s name

getPriority(): Returns this thread’s priority. Priority ranges from 1to 10

MIN_PRIORITY =1

NORMAL_PRIORITY=5(default priority)

MAX-PRIORITY=10

interrupt(): Interrupts this thread

isAlive(): Tests if this thread is alive. It returns true is thread is running, it return false f thread is

not running

119 | P a g e

isInterrupted(): Tests whether this thread has been interrupted

join(): Waits for the thread until it completes and executes the new thread

yield():A yield() method is a static method of Thread class and it can stop the currently

executing thread and will give a chance to other waiting threads of the same priority. If in

case there are no waiting threads or if all the waiting threads have low priority then the same

thread will continue its execution.

How many ways we can create a Thread. Explain in detail

How threads are created:

Threads can be created by using two mechanisms :

1. Extending the Thread class :

Syntax :

Class classname extends Thread

{

Statements;

}

2. Implementing the Runnable Interface :

Syntax :

Class classname implements Runnable

{

Statements;

}

Thread is a part of a program. Each program can have multiple threads. Each thread has a

priority which is used by thread scheduler to determine which thread must run first.

Creating Thread using Thread class :

MyThread.java :

Step1: Create class MyThread

Step 2:Extending Thread class

import java.lang.Thread;

class MyThread extends Thread

{

 public void run()

 {

 for(int i=1;i<=5;i++)

 {

 System.out.println(i);

 }

 }

public static void main(String args[])

{

MyThread t1=new MyThread();

t1.start();

120 | P a g e

}

}

Output :

javac MyThread.java

java MyThread

1

2

3

4

5

Creating Thread using Runnable Interface :

MyThread.java :

import java.lang.Runnable;

class MyThread implements Runnable

{

 public void run()

 {

 for(int i=1;i<=5;i++)

 {

 System.out.println(i);

 }

 }

public static void main(String args[])

{

MyThread mt=new MyThread();

Thread t=new Thread(mt);

t.start();

}

}

javac MyThread.java

java MyThread

1

2

3

4

5

Multithreading:

Multithreading in Java is a process of executing multiple threads simultaneously for maximum

utilization of CPU.

121 | P a g e

A thread is a lightweight sub-process, the smallest unit of processing. Multiprocessing and

multithreading, both are used to achieve multitasking.

However, we use multithreading than multiprocessing because threads use a shared memory

area. They don't allocate separate memory area so saves memory, and context-switching between

the threads takes less time than process.

Java Multithreading is mostly used in games, animation,server side applications etc.

Java provides a thread class that has various method calls in order to manage the behaviour of

threads.

Thread class methods:

start():Causes this thread to begin execution;

run():When the run() method calls, the code specified in the run() method is executed. You

can call the run() method multiple times.

sleep(long millis):Causes the currently executing thread to suspended for the specified number

of milliseconds. Sleep method is a static method so it can be called by static method

setPriority(int newPriority): this method is used to set priority andChanges the current

priority of the thread

setName(String name): Changes the name of this thread to be equal to the argument name.

currentThread(): Returns a reference to the currently executing thread object.It is a static

method it can be called by classname

getId(): returns the id of a Thread

getName(): returns this thread’s name

getPriority(): Returns this thread’s priority. Priority ranges from 1to 10

MIN_PRIORITY =1

NORMAL_PRIORITY=5(default priority)

MAX-PRIORITY=10

interrupt(): Interrupts this thread

isAlive(): Tests if this thread is alive. It returns true is thread is running, it return false f thread is

not running

isInterrupted(): Tests whether this thread has been interrupted

join(): Waits for the thread until it completes and executes the new thread.join method is a static

method so it can be called by class name.

122 | P a g e

yield():itstops thecurrently executing thread and executes the threads of same priority .if there

are no threads of same priority then it executes the currently executing thread

How to assign a priority to a thread? Can two threads have same priority?

Priority of the threads can be assigned by setPriority(int) method

When two threads have same priority we cant predict which thread will execute first

ThreadMethods.java :

import java.lang.Thread;

class ThreadMethods extends Thread

{

 public void run()

 {

 for(int i=1;i<=5;i++)

 {

 try

 {

 Thread.sleep(1000);

 }

 catch(InterruptedException ie)

 {

 }

 System.out.println(i);

 }

 }

public static void main(String args[])

{

ThreadMethods t1=new ThreadMethods();

t1.start();

System.out.println("Thread Id="+t1.getId());

System.out.println("Thread Name="+t1.getName());

t1.setName("ECE");

System.out.println("Thread Name="+t1.getName());

123 | P a g e

System.out.println("Thread Priority="+t1.getPriority());

t1.setPriority(10);

System.out.println("Thread Priority="+t1.getPriority());

try

{

t1.join();//after executing t1 thread it allows other threads to execute

}

catch(InterruptedException ie)

{

}

System.out.println("ThreadStatus="+t1.isAlive());// thread status running or not

ThreadMethods t2=new ThreadMethods();

t2.start();

}

}

Output :

javac ThreadMethods.java

 java ThreadMethods

Thread Id=14

Thread Name=Thread-0

Thread Name=ECE

Thread Priority=5

Thread Priority=10

1

2

3

4

5

ThreadStatus=false

1

2

3

4

5

write a program to Create two threads? Print one thread with even numbers and another

thread with odd numbers?

124 | P a g e

EvenOddThread.java

import java.lang.Thread;

class EvenThread extends Thread

{

 public void run()

 {

 for(int i=0;i<=10;i=i+2)

 {

 System.out.println(i);

 }

 }

}

class OddThread extends Thread

{

 public void run()

 {

 for(int i=1;i<=10;i=i+2)

 {

 System.out.println(i);

 }

 }

}

class EvenOddThread

{

public static void main(String args[])

{

EvenThread t1=new EvenThread();

System.out.println("First Thread:");

t1.start();

try

{

t1.join();

}

catch(InterruptedException ie)

{

System.out.println("Interrupted exception");

}

System.out.println("Second Thread:");

OddThread t2=new OddThread();

t2.start();

125 | P a g e

}

}

First Thread:

0

2

4

6

8

10

Second Thread:

1

3

5

7

9

Synchronization:

Synchronization in java is the capability to control the access of multiple threads to any

shared resource.

Java Synchronization is better option where we want to allow only one thread to access the

shared resource.

Uses

1. To prevent thread interference.

2. To prevent consistency problem.

Concept of Lock in Java

Synchronization is built around an internal entity known as the lock or monitor. Every

object has an lock associated with it. By convention, a thread that needs consistent access

to an object's fields has to acquire the object's lock before accessing them, and then

release the lock when it's done with them.

Thread Synchronization: Thread synchronization can be done in three ways

1. Synchronized method.

2. Synchronized block.

3. Static synchronization.

1.Synchronized method: If you declare any method as synchronized, it is known as

synchronized method.

Synchronized method is used to lock an object for any shared resource.

Syntax:

synchronized methodname(arg1,arg2,agr3,,,,,,,,,)

{

}

2.Synchronized Block:

126 | P a g e

Synchronized block can be used to perform synchronization on any specific resource of the

method.

Suppose you have 50 lines of code in your method, but you want to synchronize only 5 lines, you

can use synchronized block.

If you put all the codes of the method in the synchronized block, it will work same as the

synchronized method.

o Synchronized block is used to lock an object for any shared resource.

o Scope of synchronized block is smaller than the method.

Syntax to use synchronized block :

1. synchronized (object reference expression) {

2. //code block

3. }

3.Static synchronization: If you make any static method as synchronized, the lock will be on the

class not on object.

Syntax:

 synchronized static methodname(arg1,arg2,arg3,,,,,)

{

}

Explain the synchronization of multiple threads in Java with an example :

Synchronization.java :-*

class MovieReservation implements Runnable

{

int ticket=2;

int t;

 MovieReservation(int t)

 {

 this.t=t;

 }

public void run()

{

String name=Thread.currentThread().getName();

synchronized(this){

 if(t<=ticket)

 {

 System.out.println(name+"Ticket booked");

 ticket=ticket-1;

 }

 else

 {

 System.out.println(name+" ticket not booked");

 }

127 | P a g e

try{

Thread.sleep(1500);

}

catch(Exception e)

{

System.out.println(e);

}

}

}

}

class Synchronization

{

public static void main(String args[])

{

MovieReservation m=new MovieReservation(1);

Thread t1=new Thread(m);

t1.setName("ravi");

Thread t2=new Thread(m);

t2.setName("kalyan");

Thread t3=new Thread(m);

t3.setName("nina");

t1.start();

t2.start();

t3.start();

}

}

Output :

javac Synchronization.java

java Synchronization

raviTicket booked

kalyanTicket booked

nina ticket not booked

Communication between Thread :

Inter-thread communication in Java :

Inter-thread communication is all about allowing synchronized threads to communicate with

each other.

Inter-thread communication is a mechanism in which a thread is paused running in its critical

section and another thread is allowed to enter (or lock) in the same critical section to be executed

.It is implemented by following methods of Object class:

o wait()

o notify()

o notifyAll()

1) wait() method :

128 | P a g e

Causes current thread to release the lock and wait until either another thread invokes the notify()

method or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized

method only otherwise it will throw exception.

Method Description

public final void wait()throws InterruptedException waits until object is notified.

public final void wait(long timeout)throws InterruptedException waits for the specified amount of time.

2) notify() method :

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on

this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the

discretion of the implementation. Syntax:

3) notifyAll() method :

Wakes up all threads that are waiting on this object's monitor. Syntax:

Difference between wait and sleep?

Let's see the important differences between wait and sleep methods.

wait() sleep()

wait() method releases the lock sleep() method doesn't release the lock.

is the method of Object class is the method of Thread class

is the non-static method is the static method

should be notified by notify() or notifyAll()

methods

after the specified amount of time, sleep is

completed.

InterThreadCommunication.java :

class Accounts extends Thread

{

volatile int balance_amount=10000;

 public synchronized void withdraw(int amount)

 {

 if(amount>balance_amount)

 {

 System.out.println("waiting for deposit");

 try

 {

 this.wait();

 }

 catch(InterruptedException ie)

129 | P a g e

 {

 ie.printStackTrace();

 }

 }

 balance_amount = balance_amount -amount;

 System.out.println(amount +" Rs/- Amount is withdrawn");

 System.out.println("Balance Amount is :" + balance_amount);

 }

 public void deposit(int amount)

 {

 synchronized(this){

 balance_amount=balance_amount+amount;

 System.out.println(amount+" deposited");

 System.out.println("balance amount="+balance_amount);

 this.notifyAll();

 }

}

}

class InterThreadCommunication

{

public static void main(String args[])

{

final Accounts acc=new Accounts();

new Thread(){public void run(){

acc.deposit(10000);

}

}.start();

 new Thread(){

 public void run()

 {

 acc.withdraw(1000);

 }

 }.start();

 new Thread(){

 public void run()

130 | P a g e

 {

 acc.deposit(30000);

 }

 }.start();

 new Thread(){

 public void run()

 {

 acc.withdraw(9000);

 }

 }.start();

}

}

javac InterThreadCommuniation.java

java InterThreadCommunication

10000 deposited

balance amount=20000

9000 Rs/- Amount is withdrawn

Balance Amount is :11000

30000 deposited

balance amount=41000

1000 Rs/- Amount is withdrawn

Balance Amount is :40000

File reading and writing in java :

Java FileWriter and FileReader classes are used to write and read data from text files

FileReader:

FileReader is a class which is useful to read data in the form of characters from a ‘text’ file.

FileReader fd=new FileReader(file): Creates a FileReader object of the given File and read

the file

File reader class pre defined methods

read(): this method reads a single character. This method will read data until data available

FileWriter :

FileWriter is a class which is useful to create a file writing characters into the file.

Constructor:

FileWriter fw=new FileWriter(file): It Constructs a FileWriter object given a File object.

131 | P a g e

FileWriter class methods

 write(String str) – this method Writes a string into a file.

Write a program to read the data and write the data from a file?

//copy data from one file to another file

// read data from one file and write in another file

FileReaderWriter.java :

import java.io.*;

class FileReaderWriter

{

public static void main(String args[])

{

try{

FileReader fr=new FileReader("E:\\cse.txt");//FileReader class

FileWriter fw=new FileWriter("E:\\ece.txt");//FileWriter class

 int ch;

 while((ch=fr.read())!=-1)

 {//reading and writing int to another file

 fw.write((char)ch);

 }

 System.out.println("file reading and writing success full");

 fr.close();

 fw.close();

 }

 catch(FileNotFoundException f)

 {

 System.out.println("file not found exception");

 }

 catch(IOException io)

 {

 System.out.println("IO Exception");

 }

}

}

javac FileReaderWriter.java

java FileReaderWriter

file reading and writing success full

Random access of file in java

This class is used for reading and writing to random access file. A random access file behaves

like a large array of bytes. There is a cursor implied to the array called file pointer, by moving

the cursor we do the read write operations. If the end of file reached before reading the data from

than IOException is thrown

132 | P a g e

Constructors

RandomAccessFile(File file, String

mode):

Creates a random access file stream to read /write the

file .

Methods

length():It returns the length of the file

seek(long position):It sets the filepointer to the beginning of the file

close():It closes this random access file stream

write(int b):It writes the specified bytes to the file

read(): It reads the byte of data to a file

RandomAccessFileDemo.java

import java.io.*;

class RandomAccessFileDemo

{

public static void main(String args[])

{

try{

RandomAccessFile r1=new RandomAccessFile("E:\\cse.txt","r");

r1.seek(3);//set the location of the pointer

byte b[]=new byte[40];//creating 40 bytes of memory

r1.read(b);//read method() to read file

System.out.println(new String(b));

RandomAccessFile r2=new RandomAccessFile("E:\\ece.txt","rw");

//reading data from cse.txt and writing it into ece.txt

r2.write(b);// writing into ece.txt file

r1.close();

https://www.javatpoint.com/java-string

133 | P a g e

r2.close();

}

catch(FileNotFoundException f)

{

System.out.println("File not found Exception");

}

catch(IOException i)

{

System.out.println("IO Exception");

}

}

}

javac RandomAccessFileDemo.java

java RandomAccessFileDemo

name is peter joseph

AWT INTRODUCTION

There are two ways of giving inputting to java program

1. CommandUser Interface(CUI) Inputting: If any user interact with java program by passing

same commands through command prompt is known as CUI inputting

2. Graphical user interface(GUI)Inputting: if any user interact with java program through

a graphical window known as GUI inputting.

Graphical user interface

Graphical user interface(GUI) Offers user interaction through some graphical components.

Some of the graphical Components are Buttons ,TextField ,Radio buttons, List box ,ScrollBar etc

134 | P a g e

Abstract Window ToolKit(AWT)Controls

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based

applications in java.All these classes are defined in java.awt package.The

java.awt package provides classes for AWT api such

as TextField,Button,Label,TextArea,RadioButton,CheckBox,Choice,List etc.

Awt components are platform dependent and heavyweightt:

Awt components are platform dependent because program written in awt behaves

differently in different operating systems and awt components are displayed with different

sizes in different operating systems. AWT components are considered heavy

weight because they are being generated by underlying operating system (OS). For example

if you are create a button in AWT that means you are actually asking OS to create a text box

JAVA AWT HIERARCHY

https://www.javatpoint.com/package
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-list

135 | P a g e

Component class in java

Component Component is an object having a graphical representation that can be displayed on the

screen and that can interact with the user. For examples buttons, checkboxes, list and

scrollbars of a graphical user interface.

Useful Methods of Component class

Method Description

public void add(Component c) inserts a component on this component.

public void setSize(int width,int height) sets the size (width and height) of the component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by default false.

136 | P a g e

Explain the AWT Container hierarchy and explain them?

Container Class in java

Container: The class Container is the super class for the containers of AWT. Container object

can contain other AWT components. The Container is a component in AWT that can contain

another component like buttons, textfields, labels etc. The classes that extends Container class

are such as Window,Panel and Frame

Window

The window is the container that has no borders and menu bars.window is extended by

Frame,Dialog

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other

components like button, textfield etc.Panel is extended by Applet

Frame

The Frame is the container that contain title bar and can have menu bars. It can have other

components like button, textfield etc.

Container class Example

MyFrame.java

import java.awt.*;

class MyFrame extends Frame

{

MyFrame()

{

 setSize(500,500);

https://www.javatpoint.com/java-awt-button

137 | P a g e

 setVisible(true);

 setLayout(null);

 setTitle("AWT Example");

}

public static void main(String args[])

{

MyFrame m=new MyFrame();

}

}

The Components of AWT(AWT Controls)

Label : It can be any user defined name used to identify input field like textbox, textarea etc.

Label l1=new Label("uname");

Label l2=new Label("password");

Button

This class can be used to create a push button.

Example

Button b1=new Button("submit");

Button b2=new Button("cancel");

Checkbox

This class can be used to design multi selection checkbox.

Example

Checkbox cb1=new Checkbox(".net");

Checkbox cb2=new Checkbox("Java");

Checkbox cb3=new Checkbox("html");

Checkbox cb4=new Checkbox("php");

Choice

This class can be used to design a drop down box with more options and supports single

selection.

Example

Choice c=new Choice()

138 | P a g e

c.add("Andhra Pradesh");

c.add("Telangana");

c.add("Madhya Pradesh");

c.add("Maharastra");

List

This class can be used to design a list box with multiple options and support multi selection.

Example

List l=new List();

l.add("goa");

l.add("delhi");

l.add("pune");

Note: By holding clt button multiple options can be selected.

TextArea

TextArea class is a multi line region that displays text.Textfield is used for single line but

TextArea class is used to display multiple line. It allows the editing of multiple line text. It

inherits TextComponent class.

TextArea ta=new TextArea();

Student Registration program using AWT Controls or Awt Components

Registration.java

import java.awt.*;

class RegistrationDemo extends Frame

{

 RegistrationDemo()

 {

 setSize(1200,700);//setting size of frame

 setTitle("Registration");

 setBackground(Color.yellow);

 setForeground(Color.red);

 setLayout(null);

 setVisible(true);

139 | P a g e

 Label l1=new Label("Student Registration");//heading Label

 Font myFont = new Font("Arial", Font.BOLD, 32);// heading font

 l1.setFont(myFont);// //setting heading label font

 add(l1);

 l1.setBounds(420,45,320,35);

 Label l2=new Label("Student Name:");

 add(l2);

 l2.setBounds(420,105,90,20);

 //text field for giving input

 TextField t=new TextField();

 add(t);

 t.setBounds(520,105,140,20);

 Label l3=new Label("Gender");

 add(l3);

 l3.setBounds(420,165,50,20);

 //radio buttons creation

 CheckboxGroup gender=new CheckboxGroup();// for radio buttons

 Checkbox male=new Checkbox("male",gender,false);

 Checkbox female=new Checkbox("female",gender,false);

 add(male);

 add(female);

 male.setBounds(520,150,90,50);

 female.setBounds(620,150,140,50);

 Label l4=new Label("Department");

 add(l4);l4.setBounds(420,220,100,20);

 Choice dept=new Choice();// choi

 //drop down box for single selection

 dept.add("SELECT");

 dept.add("CSE");

 dept.add("EEE");

140 | P a g e

 dept.add("ECE");

 dept.add("MECH");

 add(dept);

 dept.setBounds(520,220,150,20);

 Label l5=new Label("Course");

 add(l5);l5.setBounds(420,275,90,20);

 //drop downbox for multiple selection

 List li=new List();

 li.add("Select");

 li.add("Java");

 li.add("C");

 li.add("C++");

 li.add("DotNet");

 add(li);

 li.setBounds(520,270,150,20);

 Label l6=new Label("Qualification");

 add(l6);

 l6.setBounds(420,325,90,20);

 //check boxes for multiple selection

 Checkbox ssc=new Checkbox("SSC");// checkbox

 Checkbox inter=new Checkbox("Inter");

 Checkbox degree=new Checkbox("Degree");

 add(ssc);

 add(inter);

 add(degree);

 ssc.setBounds(520,320,50,30);

 inter.setBounds(600,320,50,30);

 degree.setBounds(680,320,60,30);

 Label l7=new Label("Address");

 add(l7);

 l7.setBounds(420,350,90,20);

141 | P a g e

 //text area for address

TextArea t1=new TextArea();

 add(t1);

 t1.setBounds(520,350,200,100);

 Button b=new Button("Register");

 add(b);

 b.setBackground(Color.CYAN);

 b.setBounds(520,450,50,30);

 }

public static void main(String args[])

{

RegistrationDemo r=new RegistrationDemo();//calling constructor

}

}javac Registration.java

java Registration

142 | P a g e

MenuBar:

MenuBar:A Menu bar is created to the frame ;

Menubar created by

MenuBar mb=new MenuBar();

Creating menu

Menu m=new Menu(“File”);

Adding items to menu

m.add(“cut”);

m.add(“copy”);

m.add(“paste”);

adding menu to menubar

mb.add(m)

Illustrate a program to create EDIT Menu (Cut, Copy, and Paste) of NOTEPAD.

MenuBarExample.java

import java.awt.*;

class MenuBarExample extends Frame

{

MenuBarExample()

{

setSize(1200,700);

 setLayout(null);

 setTitle("Registration");

 setVisible(true);

 MenuBar mb=new MenuBar();

 Menu m=new Menu("Edit");

 m.add("cut");

 m.add("copy");

 m.add("paste");

 mb.add(m);

143 | P a g e

 setMenuBar(mb);

}

public static void main(String args[])

{

MenuBarExample m=new MenuBarExample();

 }

}

Output

javac MenuBarExample.java

java MenuBarExample

Layouts

Layout means the arrangement of components within the container in a particular order.

The java.awt package provides 5 basic layouts. Each layout has its own significance and all of

them are completely different.

The 5 layouts available in the java.awt library are:

1. Border Layout

2. Card Layout

3. Flow Layout

4. Grid Layout

144 | P a g e

5. GridBag Layout

The BorderLayout is a layout which organizes components in terms of direction. A border layout

divides the frame or panel into 5 sections – North, South, East, West and Centre.

Constructor of border layout

BorderLayout(): creates a border layout with the given horizontal and vertical gaps between the

components.

fields of the BorderLayout class

• BorderLayout.NORTH

• BorderLayout.SOUTH

• BorderLayout..EAST

• BorderLayout.WEST

• BorderLayout.CENTER

Illustrate a Java program to implement Border Layout Manager?

Border.java

import java.awt.*;

public class Border extends Frame{

Border(){

 Button b1=new Button("NORTH");;

 Button b2=new Button("SOUTH");;

 Button b3=new Button("EAST");;

 Button b4=new Button("WEST");;

 Button b5=new Button("CENTER");;

 add(b1,BorderLayout.NORTH);

 add(b2,BorderLayout.SOUTH);

 add(b3,BorderLayout.EAST);

145 | P a g e

 add(b4,BorderLayout.WEST);

 add(b5,BorderLayout.CENTER);

 setSize(300,300);

 setVisible(true);

 setLayout(new BorderLayout());

}

public static void main(String[] args) {

 new Border();

}

}

output

javac Border.java

java Border

Card Layout

146 | P a g e

The CardLayout class manages the components in such a way that only one component is visible

at a time. It treats each component as a card in the container. Only one card is visible at a time,

and the container acts as a stack of cards.

Constructors

1. CardLayout(): creates a card layout with zero horizontal and vertical gap.

Methods of card layout

o next(Container parent): is used to flip to the next card of the given container.

o previous(Container parent): is used to flip to the previous card of the given container.

o first(Container parent): is used to flip to the first card of the given container.

o last(Container parent): is used to flip to the last card of the given container.

o show(Container parent, String name): is used to flip to the specified card with the

given name.

MyCardLayout.java

import java.awt.*;

public class MyCardLayout extends Frame {

MyCardLayout(){

 Button b1=new Button("1");

 Button b2=new Button("2");

 Button b3=new Button("3");

 Button b4=new Button("4");

 Button b5=new Button("5");

 Button b6=new Button("6");

 Button b7=new Button("7");

 Button b8=new Button("8");

147 | P a g e

 Button b9=new Button("9");

 add(b1);add(b2);add(b3);add(b4);add(b5);

 add(b6);add(b7);add(b8);add(b9);

 setLayout(new CardLayout());

 //setting grid layout of 3 rows and 3 columns

 setSize(300,300);

 setVisible(true);

}

public static void main(String[] args) {

 new MyCardLayout();

}

}

Output

javac MyCardLayout.java

java MyCardLayout

148 | P a g e

FlowLayout: The FlowLayout is used to arrange the components in a line, one after another (in

a flow).

Constructor

1. FlowLayout(): creates a flow layout with centered alignment and a default 5 unit

horizontal and vertical gap.

Following are the fields in FlowLayout class.

• FlowLayout.LEFT

• FlowLayout.RIGHT

• FlowLayout.CENTER

MyFlowLayout.java

import java.awt.*;

public class MyFlowLayout extends Frame{

MyFlowLayout(){

 Button b1=new Button("1");

 Button b2=new Button("2");

149 | P a g e

 Button b3=new Button("3");

 Button b4=new Button("4");

 Button b5=new Button("5");

 add(b1);add(b2);add(b3);add(b4);add(b5);

 setLayout(new FlowLayout(FlowLayout.RIGHT));

 //setting flow layout of right alignment

 setSize(300,300);

 setVisible(true);

}

public static void main(String[] args) {

 new MyFlowLayout();

}

}

150 | P a g e

Grid Layout

The GridLayout manager is used to arrange the components in the two-dimensional grid. Each

component is displayed in a rectangle.

Constructors of grid layout

1. GridLayout(int rows, int columns): creates a grid layout with the given rows and

columns but no gaps between the components.

Example

GridLayout g=new GridLayout(2,3)

2 rows and 3 columns

//MyGridLayout.java

import java.awt.*;

public class MyGridLayout extends Frame{

MyGridLayout(){

 Button b1=new Button("1");

 Button b2=new Button("2");

 Button b3=new Button("3");

 Button b4=new Button("4");

151 | P a g e

 Button b5=new Button("5");

 Button b6=new Button("6");

 Button b7=new Button("7");

 Button b8=new Button("8");

 Button b9=new Button("9");

 add(b1);add(b2);add(b3);add(b4);add(b5);

 add(b6);add(b7);add(b8);add(b9);

 setLayout(new GridLayout(3,3));

 //setting grid layout of 3 rows and 3 columns

 setSize(300,300);

 setVisible(true);

}

public static void main(String[] args) {

 new MyGridLayout();

}

}

Output

javac MyGridLayout.java

java MyGridLayout

152 | P a g e

GridBagLayout

The Java GridBagLayout class is used to align components vertically, horizontally or along their

baseline.

The components may not be of same size. Each GridBagLayout object maintains a dynamic,

rectangular grid of cells.

constructor

 GridBagLayoutgrid = new GridBagLayout();

153 | P a g e

Event:

Changing the state of an object is known as an event. For example, click on button, dragging

mouse etc. The java.

Sources of Event

Event Handling in AWT

154 | P a g e

In general you cannot perform any action on dummy GUI screen even any button click or select

any item. To perform some actions on these dummy GUI screen you need some predefined

classes and interfaces. All these type of classes and interfaces are available

in java.awt.event package.

Changing the state of an object is known as an event.

The process of handling the request in GUI screen is known as event handling (event

represent an action). It will be changes component to component.

 Listener interfaces consists of methods

Listener

Interfaces
 Methods

ActionListener actionPerformed(ActionEvent ae)

MouseListener

mouseEntered(MouseEvent me)

mouseReleased(MouseEvent me)

mouseClicked(MouseEvent me)

mousePressed(MouseEvent me)

mouseExited(MouseEvent me)

KeyListener

keyTyped(KeyEvent ke)

keyReleased(KeyEvent ke)

keyPressed(KeyEvent ke)

155 | P a g e

ItemListener itemStateChanged(ItemEvent ie)

WindowListener

windowClosing(WindowEvent we)

windowClosed(WindowEvent we)

windowOpened(WindowEvent we)

windowActivated(WindowEvent we)

windowDeactivated(WindowEvent we)

windowIconified(WindowEvent we)

windowDeconified(WindowEvent we)

Event Delegation Model:

When we create a component(buttons,radio buttons) generally the component is display on the

screen but is not capable of performing any actions for example a submit button which can be

display but cannot perform any action. But user want to perform some action. Hence when he

clicks on the button clicking like this is called event.

An event represents some action done on a component

Event delegation model represents that when an event is generated by the user on a component it

delegates to listener interface and listener call a method in response to event finally the event is

handled by the method

The event-delegation model has two advantages

1.It enables event handling to be handled by objects . This allows a clean separation between a

component's design and its use.

2.The other advantage of the event-delegation model is that it performs much better in

applications where many events are generated.

156 | P a g e

Syntax to Handle the Event

Example

class className implements XXXListener

{

.......

.......

}

addcomponentobject.addXXXListener(this);

.......

// override abstract method of given interface and write proper logic

public void methodName(XXXEvent e)

{

.......

.......

}

.......

}

Implement Button Action event or ActionListener interface in java

ActionListernerDemo.java

import java.awt.*;

import java.awt.event.*;

class ActionListernerDemo extends Frame implements ActionListener

{

Button b;

ActionListernerDemo()

{

setSize(500,500);

157 | P a g e

setLayout(new FlowLayout());

setVisible(true);

setTitle("Button Action Event");

setBackground(Color.red);

 b=new Button("Click me");

add(b);

b.setBounds(100,100,40,50);

b.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

if(ae.getSource()==b)

setBackground(Color.blue);

}

public static void main(String args[])

{

ActionListernerDemo a=new ActionListernerDemo();

}

}

Output

158 | P a g e

Implement a program on Mouse Event using awt

import java.awt.*;

import java.awt.event.*;

class MouseListenerDemo extends Frame implements MouseListener

{

Button b;

MouseListenerDemo()

{

setSize(1000,700);

setVisible(true);

setLayout(null);

setBackground(Color.red);

setTitle("ButtonEvent");

 b=new Button("Click me");

b.setBounds(100,100,100,50);

159 | P a g e

add(b);

b.addMouseListener(this);

}

public void mouseClicked(MouseEvent ae)

{

if(ae.getSource()==b)

setBackground(Color.green);

}

public void mousePressed(MouseEvent ae)

{

}

public void mouseExited(MouseEvent ae)

{

}

public void mouseReleased(MouseEvent ae)

{

}

public void mouseEntered(MouseEvent ae)

{

}

public static void main(String args[])

{

160 | P a g e

MouseListenerDemo a=new MouseListenerDemo();

}

}

javac MouseListenerDemo.java

java MouseListenerDemo

APPLETS

Java programs can be divided into two categories :-

i) Applications and

ii) Applets.

Applications are the programs that contain main() method and applets are the programs that do

not contain main() method.

Applet: Applet is a Java program that runs on a browser. Applet is a predefined class

in java.applet package used to design distributed application. It is a client side technology.

Applets are run on web browser.

Difference between an Application program and Applet program:

161 | P a g e

S.No. Property Application Applet

1. main() method Exists does not exist

2 Execution needs JVM needs a browser like Netscape, chrome etc.

 Advantage of Applets

• Applets are supported by most web browsers.

• Applets works on client side so less response time.

• Easy to develop applet, just extends applet class.

Just like threads,applets too got a life cycle

Explain the Applet Life Cycle.

Life Cycle of an Applet:

Applet goes through different stages of execution between its birth and death.

init(): Which will be executed whenever an applet program start loading, it contains the logic

to initiate the applet properties.

start(): It will be executed whenever the applet program starts running.

162 | P a g e

stop(): Which will be executed whenever the applet window or browser is minimized.

destroy(): It will be executed whenever the applet window or browser is going to be closed

(at the time of destroying the applet program permanently).

paint(): It will be executed whenever action performed

Creation of Applet

Syntax:

class className extends Applet

{

......

// override lifecycle methods

......

}

Running of applet programs

Applet program can run in two ways.

• Using html (in the web browser)

• Using appletviewer tool (in applet window)

Running an applet program using html

 appletviewer Filename.html

Running of applet using appletviewer

appleviewer Filename.java

Some browsers does not support <applet> tag so that Sun MicroSystem was introduced a

special tool called appletviewer to run the applet program.

In this Scenario Java program should contain <applet> tag in the commented lines so that

appletviewer tools can run the current applet program.

163 | P a g e

Applet Class

Applet class contains

init(),paint,start(),stop(),destroy() methods

Structure of Applet Program:

The structure of Applet program is

• package section

• Html section

• Java App is a sub class which extends from Applets class

• Applet class contains init(),paint(),stop(),destroy() methods

import java.applet.*;

import java.awt.*;

/*

<applet code="FirstApplet.class" width="300" height="200"></applet>

*/

public class FirstApplet extends Applet

{

public void init()

{

}

public void stop()

{

}

public void destory()

{

}

public void paint(Graphics g)

164 | P a g e

{

Font f=new Font("Arial",Font.BOLD,30);

g.setFont(f);

setBackground(Color.RED);

setForeground(Color.BLUE);

g.drawString("I LOVE JAVA",30,30);

}

}

Output

javac FirstApplet.java

appletviewer FirstApplet.java

Create an Applet that changes the Font and background Color depending upon the user selection

from the input? .

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class HomeApplet extends Applet implements ActionListener,ItemListener{

165 | P a g e

 /* <applet code="HomeApplet.class" height="400" width="400">

 </applet>*/

 String name;

 Label l;

 Choice colors; //List colors

 Button b;

 String col="";

 public void init() {

 l = new Label("Choose Color:");

 colors = new Choice();

 colors.add("BLUE");

 colors.add("GRAY");

 colors.add("BLACK");

 b = new Button("Change");

 add(l);add(colors);add(b);

 b.addActionListener(this);

 colors.addItemListener(this);

 setBackground(Color.CYAN);

 setForeground(Color.BLUE);

 }

 public void start() {

 }

166 | P a g e

 public void paint(Graphics g) {

 if(col.equals("BLUE"))

 setBackground(Color.BLUE);

 else if(col.equals("BLACK"))

 setBackground(Color.BLACK);

 else

 setBackground(Color.GRAY);

 }

 public void stop() {

 }

 public void destroy() {

 }

 public void actionPerformed(ActionEvent ae) {

 col = colors.getSelectedItem();

 repaint();

 }

 public void itemStateChanged(ItemEvent ie) {

 col = colors.getSelectedItem();

 repaint();

 }

}

Output

167 | P a g e

javac HomeApplet.java

appletviewer HomeApplet.java

How to assign a priority to a thread? Can two threads have same priority?

We can assign priority to the thread by setPriority(int) method

Yes Two Threads can have same priority.

There are 3 static variables defined in Thread class for priority.

public static int MIN_PRIORITY: This is minimum priority that a thread can have. Value for

this is 1.

public static int NORM_PRIORITY: This is default priority of a thread if do not explicitly

define it. Value for this is 5.

public static int MAX_PRIORITY: This is maximum priority of a thread. Value for this is 10.

Get and Set Thread Priority:

1. public final int getPriority(): java.lang.Thread.getPriority() method returns priority of

given thread.

2. public final void setPriority(int newPriority): java.lang.Thread.setPriority() method

changes the priority of thread to the value newPriority. This method throws

IllegalArgumentException if value of parameter newPriority goes beyond minimum(1)

and maximum(10) limit.

import java.lang.*;

168 | P a g e

class ThreadDemo extends Thread {

 public void run()

 {

 System.out.println("Inside run method");

 }

 public static void main(String[] args)

 {

 ThreadDemo t1 = new ThreadDemo();

 ThreadDemo t2 = new ThreadDemo();

 t1.setPriority(2);

 t2.setPriority(5);

 t1.start();

 t2.start();

 }

}

Output

Inside run method

Inside run method

	5. Multithreaded: A flow of control is known as a thread. When any Language executes multiple threads at a time that language is known as multithreaded e. It is multithreaded.
	6. Distributed: Using this language we can create distributed applications.
	7. Robust: Java has the strong memory allocation and automatic garbage collection mechanism. It provides the powerful exception handling and type checking mechanism as compare to other programming languages.
	8. Dynamic: It supports Dynamic memory allocation due to this memory wastage is reduce and improve performance of the application. The process of allocating the memory space to the input of the program at a run-time is known as dynamic memory allocati...
	9. Secure: java API contains security related concepts due to these security related concepts java is one of the secure language.
	10. High performance: It have high performance because of following reasons;
	11. Object Oriented: It supports OOP's concepts because of this it is most secure language
	1.Object
	Java Data Types
	Command Line Arguments in Java:
	Syntax for Compile and Run CMD programs
	For:
	Break :
	Continue :
	Array in java:
	Advantage of Array:
	Disadvantage of Array:
	Syntax Array in Java:
	Array creation:
	Single dimensional Arrays:
	Syntax :
	Rules for implementation interface :
	Java String class methods :

	Immutable String in Java :
	Why string objects are immutable in java?
	Important methods of StringBuilder class :
	Methods of StringTokenizer class
	Hierarchy of Collection Framework ;

	Iterable Interface :
	Methods of Collection interface :

	List Interface: It is present in java.util package.
	The classes that implement list interface are:
	ArrayList
	Vector :
	Stack :
	Set Interface :
	HashSet :
	LinkedHashSet :
	import java.util.LinkedHashSet;
	import java.util.Iterator;
	class LinkedHashSetDemo
	{
	public static void main(String args[])
	{
	LinkedHashSet <String> v=new LinkedHashSet<String>();
	v.add("rama");
	v.add("sita");
	v.add("");
	v.add("rama");
	v.add("laxman");
	Iterator<String> i=v.iterator();
	while(i.hasNext())
	{
	System.out.println(i.next());
	}
	}
	}
	Output :
	rama
	sita
	laxman
	Sorted Set Interface :
	Tree Set Class :
	TreeSet class implements the Sorted Set interface that uses a tree for storage.
	Like HashSet, TreeSet also contains unique elements.
	It can allow at most one null value
	However, the access and retrieval time of TreeSet is quite fast.
	The elements in TreeSet stored in ascending order.
	TreeSetDemo.java :
	import java.util.TreeSet;
	import java.util.Iterator;
	class TreeSetDemo
	{
	public static void main(String args[])
	{
	TreeSet <String> t=new TreeSet<String>();
	t.add("rama");
	t.add("laxman");
	t.add("sita");
	t.add("dasaradh");
	t.add("ravan");
	t.add("ravan");
	t.add("");
	t.add("");
	Iterator<String> i=t.iterator();
	while(i.hasNext())
	{
	System.out.println(i.next());
	}
	}
	}
	javac TreeSetDemo.java
	java TreeSetDemo
	dasaradh
	laxman
	rama
	ravan
	sita
	Map.Entry interface
	SortedMap Interface:
	SortedMap is an interface in the collection framework. This interface extends the Map interface and provides a total ordering of its elements (elements can be traversed in sorted order of keys). The class that implements this interface is TreeMap.

	 Queue is implemented by priority queue.
	PriorityQueue :
	Deque Interface :
	ArrayDeque :
	Methods of Java Deque Interface
	Iterators in Collection
	 ForEach
	 Iterator
	 Listiterator
	 Enumeration
	ForEach loop:

	Syntax
	ForEachDemo.java :
	import java.util.LinkedList;
	class ForEachDemo
	{
	public static void main(String args[])
	{
	LinkedList <String>ll=new LinkedList<String>();
	ll.add("rama");
	ll.add("sita");
	ll.add("laxman");
	ll.add("ravana");
	for(String str:ll)
	{
	System.out.println(" "+str);
	}
	}
	}
	Output :
	rama
	sita
	laxman
	ravana
	Enumeration: The Enumeration interface defines the methods by which you can enumerate the elements in a collection object.
	EnumerationDemo.java :
	import java.util.Enumeration;
	import java.util.Vector;
	class EnumerationDemo
	{
	public static void main(String args[])
	{
	Vector <String>v=new Vector<String>();
	v.add("rama");
	v.add("sita");
	v.add("laxman");
	Enumeration e=v.elements();
	while(e.hasMoreElements())
	{
	System.out.println(e.nextElement());
	}
	}
	}
	Output:
	rama
	sita
	laxman
	Iterator interface :
	Methods of Iterator interface

	ListIterator is a bi-directional iterator. For this functionality, it has two kinds of methods:
	Collections class :
	Method of Collections class for sorting List elements :
	Methods of Java Comparator Interface :

	Collections class :
	Collections class provides static methods for sorting the elements of a collection. If collection elements are of Set or Map, we can use TreeSet or TreeMap. However, we cannot sort the elements of List. Collections class provides methods for sorting t...
	Method of Collections class for sorting List elements
	peter
	prakash
	yugandhar
	karthik

	Foreach Syntax :
	How to get Java Scanner :
	How to get Java Scanner
	Java Multi-catch block

	Java Nested try block
	Why use nested try block
	2) Runnable :
	3) Running :
	4) Non-Runnable (Blocked) :
	5) Terminated :
	Concept of Lock in Java
	Thread Synchronization: Thread synchronization can be done in three ways
	class MovieReservation implements Runnable
	{
	int ticket=2;
	int t;
	MovieReservation(int t)
	{
	this.t=t;
	}
	public void run()
	{
	String name=Thread.currentThread().getName();
	synchronized(this){
	if(t<=ticket)
	{
	System.out.println(name+"Ticket booked");
	ticket=ticket-1;
	}
	else
	{
	System.out.println(name+" ticket not booked");
	}
	try{
	Thread.sleep(1500);
	}
	catch(Exception e)
	{
	System.out.println(e);
	}
	}
	}
	}
	class Synchronization
	{
	public static void main(String args[])
	{
	MovieReservation m=new MovieReservation(1);
	Thread t1=new Thread(m);
	t1.setName("ravi");
	Thread t2=new Thread(m);
	t2.setName("kalyan");
	Thread t3=new Thread(m);
	t3.setName("nina");
	t1.start();
	t2.start();
	t3.start();
	}
	}
	Output :
	javac Synchronization.java
	java Synchronization
	raviTicket booked
	kalyanTicket booked
	nina ticket not booked

	Inter-thread communication in Java :
	1) wait() method :
	2) notify() method :
	3) notifyAll() method :
	Difference between wait and sleep?
	InterThreadCommunication.java :
	Useful Methods of Component class
	Container Class in java
	Window
	Panel
	Frame
	Button
	Example
	Checkbox
	Example
	Choice
	Example
	Choice c=new Choice()
	c.add("Andhra Pradesh");
	c.add("Telangana");
	c.add("Madhya Pradesh");
	c.add("Maharastra");
	List
	Example
	Student Registration program using AWT Controls or Awt Components
	Registration.java
	import java.awt.*;
	class RegistrationDemo extends Frame
	{
	RegistrationDemo()
	{
	setSize(1200,700);//setting size of frame
	setTitle("Registration");
	setBackground(Color.yellow);
	setForeground(Color.red);
	setLayout(null);
	setVisible(true);
	Label l1=new Label("Student Registration");//heading Label
	Font myFont = new Font("Arial", Font.BOLD, 32);// heading font
	l1.setFont(myFont);// //setting heading label font
	add(l1);
	l1.setBounds(420,45,320,35);
	Label l2=new Label("Student Name:");
	add(l2);
	l2.setBounds(420,105,90,20);
	//text field for giving input
	TextField t=new TextField();
	add(t);
	t.setBounds(520,105,140,20);
	Label l3=new Label("Gender");
	add(l3);
	l3.setBounds(420,165,50,20);
	//radio buttons creation
	CheckboxGroup gender=new CheckboxGroup();// for radio buttons
	Checkbox male=new Checkbox("male",gender,false);
	Checkbox female=new Checkbox("female",gender,false);
	add(male);
	add(female);
	male.setBounds(520,150,90,50);
	female.setBounds(620,150,140,50);
	Label l4=new Label("Department");
	add(l4);l4.setBounds(420,220,100,20);
	Choice dept=new Choice();// choi
	//drop down box for single selection
	dept.add("SELECT");
	dept.add("CSE");
	dept.add("EEE");
	dept.add("ECE");
	dept.add("MECH");
	add(dept);
	dept.setBounds(520,220,150,20);
	Label l5=new Label("Course");
	add(l5);l5.setBounds(420,275,90,20);
	//drop downbox for multiple selection
	List li=new List();
	li.add("Select");
	li.add("Java");
	li.add("C");
	li.add("C++");
	li.add("DotNet");
	add(li);
	li.setBounds(520,270,150,20);
	Label l6=new Label("Qualification");
	add(l6);
	l6.setBounds(420,325,90,20);
	//check boxes for multiple selection
	Checkbox ssc=new Checkbox("SSC");// checkbox
	Checkbox inter=new Checkbox("Inter");
	Checkbox degree=new Checkbox("Degree");
	add(ssc);
	add(inter);
	add(degree);
	ssc.setBounds(520,320,50,30);
	inter.setBounds(600,320,50,30);
	degree.setBounds(680,320,60,30);
	Label l7=new Label("Address");
	add(l7);
	l7.setBounds(420,350,90,20);
	//text area for address
	TextArea t1=new TextArea();
	add(t1);
	t1.setBounds(520,350,200,100);
	Button b=new Button("Register");
	add(b);
	b.setBackground(Color.CYAN);
	b.setBounds(520,450,50,30);
	}
	public static void main(String args[])
	{
	RegistrationDemo r=new RegistrationDemo();//calling constructor
	}
	}javac Registration.java
	java Registration
	Event Handling in AWT
	In general you cannot perform any action on dummy GUI screen even any button click or select any item. To perform some actions on these dummy GUI screen you need some predefined classes and interfaces. All these type of classes and interfaces are avai...
	Listener interfaces consists of methods

	Syntax to Handle the Event
	Example
	Advantage of Applets
	Creation of Applet
	Syntax:
	Running of applet using appletviewer

